MIT Technology Review Subscribe

Bendable Magnetic Interface

A sensing surface developed by Microsoft researchers offers new ways to use computers.

Computer users have been typing on keyboards and clicking on mice for more than 20 years. An experimental new interface under development at Microsoft could give them a completely new way to use their system.

Bladder control: Manipulating a magnetic fluid on top of the researchers’ “sensor tile” (top) offers a novel way to control a computer. The interface can be used to sculpt virtual shapes (bottom).

Multi-touch and motion-sensing devices have recently emerged from research labs, offering new ways to operate computers. Microsoft’s experimental tactile interface takes things further still, letting users interact by squashing, stretching, rolling, or rubbing.

Advertisement

At the base of the new device a “sensor tile” produces magnetic multiple fields above its surface. By detecting disturbances to these fields, the system can track the movement of a metal object across its surface, or the manipulation of a bladder filled with iron filings or a magnetic fluid. A user can drag a ball bearing across the surface to move a cursor across a computer’s screen, or manipulate a ferrous fluid-filled bladder to sculpt 3D virtual objects.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

Stuart Taylor of Microsoft Research Cambridge in the U.K. says that the surface can easily be reconfigured to allow for different forms of input. Working with Microsoft colleagues and with Jonathan Hook at Newcastle University, Taylor created arrays of 64 magnetic coils, each wrapped in a coiled wire, within a 100-square-centimeter sensor tile. “In essence, these are modeled on an electric guitar setup,” says Taylor. “If you disrupt the field, this causes a current to be induced in the coil.”

The researchers have also experimented with applying currents to the coils to induce physical effects on the objects placed on top of the sensor tile. This could allow an input device to also provide haptic force-feedback, says Taylor.

“It’s an interesting concept which extends multi-touch to something more tangible,” says Anthony Steed, a professor in the Virtual Environments and Computer Graphics group at University College London. To have a surface that lets users manipulate different objects would be of great interest, he says.

However, Steed says, making a device that could switch between an input and output device would be challenging. While moving ball bearings using magnetic fields shouldn’t be too hard, “[moving] ferrous fluid bladders would be trickier,” he says.

Taylor admits that it’s early. As with the very first capacitance-based touch sensors–originally used in experimental electronic instruments but now common in iPhones–it’s hard to guess where this could go or what impact it would have in the long term. “We’re really at the starting point of thinking about the broader applications,” he says.

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement