MIT Technology Review Subscribe

A Robotic Arm for Lunar Missions

NASA has developed a robotic device that can help astronauts live and work on the moon and eventually Mars.

It looks like a lightweight crane, but NASA’s new robotic arm can do more than just lift objects. Called the Lunar Surface Manipulator System (LSMS), it could be a strong helping hand for astronauts living and working on the moon. It could, for example, move large payloads and precisely position scientific experiments.

LSMS is moving a simulated lunar oxygen generation plant from a
lunar lander mockup to the surface during a test in Moses Lake,
Washington. Credit: NASA/Sean Smith

NASA’s plan is not just to return to the moon by 2020, but to build a lunar outpost there. To do so, astronauts will need help lifting large and sometimes awkwardly-shaped payloads, and getting to spaces too high for them to reach. The device is similar to the space shuttle’s robotic arm, which has been essential for moving equipment and checking for damage to the shuttle’s heat shield.

Advertisement

The LSMS will be able to carry loads between 100 to 3,000 kilograms, and the arm and forearm would be able to rotate up 45 degrees and extend as high as about 9 meters. When reach is more important, it can be configured as a 3.75-meter-tall horizontal boom capable of stretching out 7.5 meters. The system will be modular so that other devices can be added to it. And it will be made out of lightweight, high-stiffness graphite-epoxy composites.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

The manipulator system, which is being built at Langley Research Center, was first tested in 2008. “The manipulator did everything we wanted it to, from lifting large simulated airlocks and habitats to more delicate tasks, such as precisely positioning scientific payloads,” said John Dorsey, a senior aerospace engineer at Langley and a task led for LSMS development and testing, in a NASA press release.

Yet the system is still in early phases of development. Engineers have to make sure that it can withstand the lunar environment, including the fine-grained, low-gravity soil, or regolith, that could blow into the device’s crevasses and cause a jam. The arm will also have to withstand solar radiation storms.

Building such hardware will be important if astronauts’ are to live and work on the moon and eventually Mars. As this article on The Space Review points out, the new robotic system could be a good opportunity for International collaboration. It could also be sent to the moon in advance of astronauts to start building a habitat before they get there. Once NASA’s Constellation program gets the green light from the new administration–the program is currently being review by an independent panel–we may see more devices like this being built.

NASA also had some of its other lunar rovers and robotics at Moses Lake for the test. Credit: NASA

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement