MIT Technology Review Subscribe

Nano Solution

Nanoparticles show promise as an ingredient in solar cells, where they could absorb light and generate electrons. But photovoltaic devices made from nanoparticles are still far less efficient than conventional silicon cells. This is partly because some of the liberated electrons never reach an electrode. Now researchers at the University of Notre Dame in Indiana have doubled the efficiency with which these cells convert ultraviolet light to electricity. They deposited single-walled carbon nanotubes on an electrode to form a scaffold for electron-­generating titanium dioxide particles. A carbon nanotube (cylindrical object, left) collects an electron (shown in pink) and provides a more direct route from the nanoparticles (round objects) to the electrode (right). The cells convert ultraviolet light to electrons more efficiently than commercial silicon cells, but they do not yet work with visible light.

Advertisement
This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in
This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement