MIT Technology Review Subscribe

Planets' Baby Pictures

MIT research published in Nature in April offers the first direct evidence that when a massive star explodes, some of its debris falls back toward its dense remaining core, called a neutron star. The resulting volatile disk of debris swirls around the neutron star like a 45 record with a marble at its center. (The colorized image to the left shows such a disk surrounding the neutron star Cassiopeia A, which is about 10,000 light-years away.)

A volatile disk of debris surronding the neutron star Cassiopeia A. (Credit: X-Ray: NASA/CXC/SAO; Optical: NASA/STSCI; Infrared: NASA/JPL-Caltech.)

Solar systems like our own usually coalesce from a cloud of gas, dust, and ice left over when a new star forms. From images taken by the NASA Infrared Spitzer Telescope, associate professor of physics Deepto Chakrabarty and his team deduced that the spinning cloud created when a massive star dies in a supernova explosion could also give rise to planets. Bathed in x-rays, any such planets would be virtually uninhabitable.

Advertisement
This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in
This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement