MIT Technology Review Subscribe

A Carbide Revolution?

Earlier this week, news broke of a feat that could transform the semiconductor industry. In the August 26 issue of Nature, a Japanese research group announced that it had succeeded in making almost perfect crystals of silicon carbide. (Here’s an…

Earlier this week, news broke of a feat that could transform the semiconductor industry. In the August 26 issue of Nature, a Japanese research group announced that it had succeeded in making almost perfect crystals of silicon carbide. (Here’s an AP story describing the development.) Silicon carbide carries current more efficiently than the ubiquitously used silicon and can operate at much higher voltages. Silicon carbide also keeps on working at temperatures far above those at which silicon devices fail, and shrugs off radiation. But silicon carbide crystals created by conventional means have an impossibly high level of defects, so the material has never been a practical alternative to silicon for the semiconductor industry.

The new technique, developed at Toyota’s Central Research and Development Laboratories, could change all that. Called repeated a-face (RAF) deposition, it has produced results that Roland Madar of the Toyota labs describes as “spectacular” in an opinion piece in the same issue of Nature (subscription required).

The implications could be huge. Researchers in the U.S. and Sweden estimate that use of silicon carbide in control devices for power generation and distribution could eliminate the need for tens of billions of dollars worth of new power plants. Silicon sensors and controls for aircraft and automobile engine have to be isolated and shielded from heat sources, but their silicon carbide cousins wouldn’t need that sort of cosseting, resulting in substantial weight savings and gains in efficiency. In spacecraft, where extra weight is enormously costly, the virtues of silicon carbide–especially its indifference to heat and radiation–would be even more welcome. And silicon carbide components can even protect avionics equipment from interference by stray radiofrequency signals, so in the future you may no longer need to turn off all electronic equipment when your flight is about to take off.

Advertisement
This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in
This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement