MIT Technology Review Subscribe

Reinventing Biology, Virtually

An audacious collaboration of top inventors aims to create a “nanolab”–a chip that can sense impending disease by detecting proteins in a single blood cell.

Sometimes, thinking big means thinking small. For an audacious collaboration known as the Nanosystems Biology Alliance, the goal is nothing less than to invent a “nanolab,” a chip one centimeter square that can sense 10,000 different proteins and other molecules in a single blood cell, looking for signs of impending disease and helping to identify malfunctioning molecular pathways that could be regulated with drugs.

Reaching that goal will require a combination of advances in nanotechnology, microfluidics, and “systems biology,” which views cells as if they consisted of vast chemical circuits. So the alliance is thinking big as well: it includes researchers in eight labs at three West Coast scientific institutions.

Advertisement

To cofounder Leroy Hood, the alliance represents how it’s possible to push the boundaries of invention by bringing top inventors together-even if they’re separated by geography. “If you want to solve a problem, why not get the best people together to work on it?” says Hood, who is also president of Seattle’s Institute for Systems Biology.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

The alliance’s elite eight include people like James Heath, a Caltech chemist and nanotechnology pioneer; Michael Phelps, a University of California, Los Angeles, scientist who coinvented positron emission tomography (PET); and Hood himself, the coinventor of the automated DNA sequencer. Hood’s hope is to combine the group’s mental firepower to build a handheld device that could detect everything from the early signs of cancer to the molecular changes associated with heart disease.

Financing their work from existing academic grants, the alliance members have spent most of the last year learning about each other’s fields, trading postdocs, and exchanging lots-lots-of e-mail. But the alliance “is not completely virtual, or it would not work,” says Heath. He and the members of his Caltech group visit Hood’s lab frequently and swap equipment and materials. Also helping to keep the whole extended collaboration together: “We have a strong and shared vision of where we want to go,” Heath says. “That drives everything.”

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement