MIT Technology Review Subscribe

Gold Standard

Nanotech

As researchers engineer everything from computer chips to drug-discovery tools down to smaller and smaller scales, making these devices is becoming excruciatingly difficult. The principal micromanufacturing technique, photolithography, uses light to etch microscopic features onto a silicon surface; but it’s expensive and exacting. One promising alternative is called “soft lithography,” a technique that uses flexible rubber stamps to fabricate devices with micro- and nanoscale features.

Until now soft lithography has mainly been used to make tiny devices like microfluidic chambers used for biological research. But Harvard University chemists George Whitesides -soft lithography’s pioneer-and Heiko Jacobs have found a new application: transferring nanoscale patterns of electrical charge onto electrically conductive polymers. This advance could mean a cheaper and easier way to manufacture very small data storage and optical devices.

Advertisement

The Harvard scientists accomplished the trick by first building a mold made of silicon, using traditional photolithography methods to carve out the pattern. They then poured rubbery silicone into the mold to make the stamps, which they coated with a thin layer of gold. When the researchers pressed one of these stamps against a polymer film and ran a current through them, the pattern was transferred to the polymer as a series of positive and negative charges. A single mold can churn out multiple stamps, and each can be used repeatedly.

This story is only available to subscribers.

Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.

Subscribe now Already a subscriber? Sign in
You’ve read all your free stories.

MIT Technology Review provides an intelligent and independent filter for the flood of information about technology.

Subscribe now Already a subscriber? Sign in

Although the new technique is now just a lab demonstration, potential new applications include encoding data on charge-based storage devices such as “smart cards”-credit-card-sized pieces of plastic used to verify the cardholder’s identity-or constructing waveguides for optical telecommunications switches. Says Christopher B. Murray, manager of nanoscale materials and devices at IBM’s T. J. Watson Research Center, “This is one more step in a number of beautiful efforts to explore nontraditional patterning technology.”

This is your last free story.
Sign in Subscribe now

Your daily newsletter about what’s up in emerging technology from MIT Technology Review.

Please, enter a valid email.
Privacy Policy
Submitting...
There was an error submitting the request.
Thanks for signing up!

Our most popular stories

Advertisement