Skip to Content

Nanocharging Solar

Arthur Nozik believes quantum-dot solar power could boost output in cheap photovoltaics.
March 12, 2007
Arthur Nozik hopes quantum dots will enable the production of more efficient and less expensive solar cells, finally making solar power competitive with other sources of electricty.
LANCE W. CLAYTON

No renewable power source has as much theoretical potential as solar energy. But the promise of cheap and abundant solar power remains unmet, largely because today’s solar cells are so costly to make.

Photovoltaic cells use semiconductors to convert light energy into electrical current. The workhorse photo­voltaic material, silicon, performs this conversion fairly efficiently, but silicon cells are relatively expensive to manufacture. Some other semiconductors, which can be deposited as thin films, have reached market, but although they’re cheaper, their efficiency doesn’t compare to that of silicon. A new solution may be in the offing: some chemists think that quantum dots–tiny crystals of semi­conductors just a few nanometers wide–could at last make solar power cost-competitive with electricity from fossil fuels.

By dint of their size, quantum dots have unique abilities to interact with light. In silicon, one photon of light frees one electron from its atomic orbit. In the late 1990s, Arthur Nozik, a senior research fellow at the National Renewable Energy Laboratory in Golden, CO, postulated that quantum dots of certain semiconductor materials­ could release two or more electrons when struck by high-energy photons, such as those found toward the blue and ultraviolet end of the spectrum.

In 2004, Victor Klimov of Los Alamos­ National Laboratory in New Mexico provided the first experimental proof that Nozik was right; last year he showed that quantum dots of lead selenide could produce up to seven electrons per photon when exposed to high-energy ultraviolet light. Nozik’s team soon demonstrated the effect in dots made of other semiconductors, such as lead sulfide and lead telluride.

These experiments have not yet produced a material suitable for commercialization, but they do suggest that quantum dots could someday increase the efficiency of converting sunlight into electricity. And since quantum dots can be made using simple chemical reactions, they could also make solar cells far less expensive. Researchers in Nozik’s lab, whose results have not been published, recently demonstrated the extra-electron effect in quantum dots made of silicon; these dots would be far less costly to incorporate into solar cells than the large crystalline sheets of silicon used today.

To date, the extra-electron effect has been seen only in isolated quantum dots; it was not evident in the first proto­type photovoltaic devices to use the dots. The trouble is that in a working solar cell, electrons must travel out of the semiconductor and into an external electrical circuit. Some of the electrons freed in any photovoltaic cell are inevitably “lost,” recaptured by positive “holes” in the semiconductor. In quantum dots, this recapture happens far faster than it does in larger pieces of a semiconductor; many of the freed electrons are immediately swallowed up.

The Nozik team’s best quantum­-dot solar cells have managed only about 2 percent efficiency, far less than is needed for a practical device. However, the group hopes to boost the efficiency by modifying the surfaces of the quantum dots or improving electron transport between dots.

The project is a gamble, and Nozik readily admits that it might not pay off. Still, the enormous potential of the nanocrystals keeps him going. Nozik calculates that a photovoltaic device based on quantum dots could have a maximum efficiency of 42 percent, far better than silicon’s maximum efficiency of 31 percent. The quantum dots themselves would be cheap to manufacture, and they could do their work in combination with materials like conducting polymers that could also be produced inexpensively. A working quantum dot-polymer cell could eventually place solar electricity on a nearly even economic footing with electricity from coal. “If you could [do this], you would be in Stockholm–it would be revolutionary,” says Nozik.

A commercial quantum-dot solar cell is many years away, assuming it’s even possible. But if it is, it could help put our fossil-fuel days behind us.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.