Skip to Content

Mobile 3-D

Smart phones will take 3-D mainstream.
3-D on the go: Released in South Korea in March, Samsung's W960 mobile phone comes with 3-D video content, generated by Dynamic Digital Depth, that can be viewed without special glasses. Dynamic Digital Depth expects that its software to convert 2-D games to 3-D on the fly will be built into phones within the next two years.
BRYAN CHRISTIE DESIGN

The Samsung B710 phone looks like a typical smart phone, but something unexpected happens when the screen is moved from a vertical to a horizontal orientation: the image jumps from 2-D to 3-D. The technology that produces this perception of depth is the work of Julien Flack, CTO of Dynamic Digital Depth, who has spent more than a decade perfecting software that can convert 2-D content to 3-D in real time. It could help solve the biggest problem with 3-D: the need for special glasses that deliver a separate image to each eye.

Flack’s software synthesizes 3-D scenes from existing 2-D video by estimating the depth of objects using various cues; a band of sky at the top of a frame probably belongs in the far background, for example. It then creates pairs of slightly different images that the viewer’s brain combines to produce the sensation of depth.

The technology can be used with the much-hyped 3-D televisions announced in January (which require glasses), but its biggest impact will be as a way to create content for mobile devices with auto­stereoscopic 3-D displays, which work by directing light to deliver different versions of an image directly to each of a viewer’s eyes. The effect works best over a narrow range of viewing angles, so it is ill suited to television or cinema screens. But phones are generally used by one person at a time and are easily held at the optimum angle. That’s why mobile multimedia devices are likely to win the race to bring 3-D into the mainstream.

Powered by Flack’s software, Dynamic Digital Depth has become an early leader in mobile 3-D. The software was built into the B710, which Samsung released in South Korea in 2007, and Samsung has licensed 3-D content generated by Dynamic Digital Depth for its latest 3-D phone, the W960, released in March. Research firm DisplaySearch recently predicted that by 2018 there will be 71 million such devices worldwide.

The most exciting area for Flack right now is games. Hundreds of games actually simulate 3-D spaces internally to handle mechanics such as the path of a missile, and then convert those 3-D spaces into 2-D to display to the player. With his technology, he says, the 3-D geometry “available inside the game itself” can be made accessible to the display. DDD has already released software that converts games to 3-D on PCs and expects to have similar software running on mobile devices in the next year or two.

It’s applications like mobile games and video that will drive the widespread adoption of 3-D screens. And that, in turn, could lay the groundwork for a new generation of surprising interfaces and applications, just as large 2-D screens on mobile devices spawned developments such as touch-based interfaces and augmented reality.

Keep Reading

Most Popular

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.