Skip to Content

The Cell Atlas

Biology’s next mega-project will find out what we’re really made of.
February 22, 2017
Fred Tomaselli and James Cohan, New York

The Cell Atlas

  • Breakthrough

    A master catalog of every cell type in the human body.
  • Why it matters

    Super-accurate models of human physiology will speed up the discovery and testing of new drugs.
  • Key players

    Broad Institute; Sanger Institute; Chan Zuckerberg Biohub
  • Availability

    5 years

In 1665, Robert Hooke peered down his microscope at a piece of cork and discovered little boxes that reminded him of rooms in a monastery. Being the first scientist to describe cells, Hooke would be amazed by biology’s next mega-project: a scheme to individually capture and scrutinize millions of cells using the most powerful tools in modern genomics and cell biology. 

The objective is to construct the first comprehensive “cell atlas,” or map of human cells, a technological marvel that should comprehensively reveal, for the first time, what human bodies are actually made of and provide scientists a sophisticated new model of biology that could speed the search for drugs.

To perform the task of cataloguing the 37.2 trillion cells of the human body, an international consortium of scientists from the U.S., U.K., Sweden, Israel, the Netherlands, and Japan is being assembled to assign each a molecular signature and also give each type a zip code in the three-dimensional space of our bodies.

“We will see some things that we expect, things we know to exist, but I’m sure there will be completely novel things,” says Mike Stubbington, head of the cell atlas team at the Sanger Institute in the U.K. “I think there will be surprises.”

Previous attempts at describing cells, from the hairy neurons that populate the brain and spinal cord to the glutinous fat cells of the skin, suggest there are about 300 variations in total. But the true figure is undoubtedly larger. Analyzing molecular differences between cells has already revealed, for example, two new types of retinal cells that escaped decades of investigation of the eye; a cell that forms the first line of defense against pathogens and makes up four in every 10,000 blood cells; and a newly spotted immune cell that uniquely produces a steroid that appears to suppress the immune response.

Three technologies are coming together to make this new type of mapping possible. The first is known as “cellular microfluidics.” Individual cells are separated, tagged with tiny beads, and manipulated in droplets of oil that are shunted like cars down the narrow, one-way streets of artificial capillaries etched into a tiny chip, so they can be corralled, cracked open, and studied one by one.

The second is the ability to identify the genes active in single cells by decoding them in superfast and efficient sequencing machines at a cost of just a few cents per cell. One scientist can now process 10,000 cells in a single day.

The third technology uses novel labeling and staining techniques that can locate each type of cell—on the basis of its gene activity—at a specific zip code in a human organ or tissue.

Behind the cell atlas are big-science powerhouses including Britain’s Sanger Institute, the Broad Institute of MIT and Harvard, and a new “Biohub” in California funded by Facebook CEO Mark Zuckerberg. In September Zuckerberg and his wife, Priscilla Chan, made the cell atlas the inaugural target of a $3 billion donation to medical research.  

Keep Reading

Most Popular

conceptual illustration showing various women's faces being scanned
conceptual illustration showing various women's faces being scanned

A horrifying new AI app swaps women into porn videos with a click

Deepfake researchers have long feared the day this would arrive.

2021 tech fails concept
2021 tech fails concept

The worst technology of 2021

Face filters, billionaires in space, and home-buying algorithms that overpay all made our annual list of technology gone wrong.

glacier near Brown Station
glacier near Brown Station

The radical intervention that might save the “doomsday” glacier

Researchers are exploring whether building massive berms or unfurling underwater curtains could hold back the warm waters degrading ice sheets.

Professor Gang Chen of MIT
Professor Gang Chen of MIT

In a further blow to the China Initiative, prosecutors move to dismiss a high-profile case

MIT professor Gang Chen was one of the most prominent scientists charged under the China Initiative, a Justice Department effort meant to counter economic espionage and national security threats.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.