Synthetic Cells
The bacteria growing on stacks of petri dishes in Daniel Gibson’s lab are the first living creatures with a completely artificial genome. The microbes’ entire collection of genes was edited on a computer and assembled by machines that create genetic fragments from chemicals and by helper cells that pieced those fragments together. Gibson hopes that being able to design and create entire genomes, instead of just short lengths of DNA, will dramatically speed up the process of engineering microbes that can carry out tasks such as efficiently producing biofuels or vaccines.
Until last year, biologists hadn’t been able to make large enough pieces of DNA to create an entire genome; though living cells routinely make long stretches of DNA, a DNA synthesis machine can’t do the same. In May, Gibson and his colleagues at the J. Craig Venter Institute announced their solution to this problem. Gibson used yeast cells to stitch together thousands of fragments of DNA made by a machine, pooled the longer pieces, and repeated the process until the genome was complete. Next he inserted the genome into bacterial cells that were about to divide and grew the bacteria in a medium hostile to all cells except the ones harboring the synthetic genome.
“When we began in 2004,” he says, “assembling a complete bacterial genome didn’t seem like an easy thing to do”—even though the Venter Institute researchers started with one of the smallest bacterial genomes that have been sequenced, that of a mycoplasma. After finally overcoming the technical hurdles involved, Gibson says, creating the synthetic cell itself was exciting but almost anticlimactic. Going from computer screen to bacterial colony now seems easy.
Gibson has also developed a faster, yeast-free way to assemble large pieces of DNA in a bottle. His colleagues are using these methods to rapidly synthesize the viral DNA needed to speed up the production of influenza vaccines. The nonprofit Venter Institute is working with Synthetic Genomics, a company that commercializes work done at the institute, to develop products.
The creation of the synthetic cell is part of an effort to design a “minimal cell” containing only the most basic genome required for life. Gibson and his colleagues at the Venter Institute believe that synthetic biologists could use this minimal cell as the basis for cells that efficiently produce biofuels, drugs, and other industrial products.
Right now, Gibson’s technique for incorporating his synthetic genome into living cells works only with mycoplasmas, which are useful for experimentation but not for industrial purposes. If Gibson can adapt this system to work with a broader group of bacteria, it could be used to speed up the process of engineering microbes that make a wide variety of products. At least two major challenges remain: developing appropriate recipient cells for genome transplants, and finding ways of working with even larger pieces of DNA. “We’re still in the early stages,” he says, “and we don’t know what the limits are.”
Keep Reading
Most Popular
DeepMind’s cofounder: Generative AI is just a phase. What’s next is interactive AI.
“This is a profound moment in the history of technology,” says Mustafa Suleyman.
What to know about this autumn’s covid vaccines
New variants will pose a challenge, but early signs suggest the shots will still boost antibody responses.
Human-plus-AI solutions mitigate security threats
With the right human oversight, emerging technologies like artificial intelligence can help keep business and customer data secure
Next slide, please: A brief history of the corporate presentation
From million-dollar slide shows to Steve Jobs’s introduction of the iPhone, a bit of show business never hurt plain old business.
Stay connected
Get the latest updates from
MIT Technology Review
Discover special offers, top stories, upcoming events, and more.