Skip to Content

Quantum supremacy

YOSHI SODEOKAYoshi Sodeoka

Quantum supremacy

  • Why it matters

    Eventually, quantum computers will be able to solve problems no classical machine can manage.
  • Key players

    Google, IBM, Microsoft, Rigetti, D-Wave, IonQ, Zapata Computing, Quantum Circuits
  • Availability

    5-10+ years

Google has provided the first clear proof of a quantum computer outperforming a classical one.

Quantum computers store and process data in a way completely differently from the ones we’re all used to. In theory, they could tackle certain classes of problems that even the most powerful classical supercomputer imaginable would take millennia to solve, like breaking today’s cryptographic codes or simulating the precise behavior of molecules to help discover new drugs and materials.

There have been working quantum computers for several years, but it’s only under certain conditions that they outperform classical ones, and in October Google claimed the first such demonstration of “quantum supremacy.” A computer with 53 qubits—the basic unit of quantum computation—did a calculation in a little over three minutes that, by Google’s reckoning, would have taken the world’s biggest supercomputer 10,000 years, or 1.5 billion times as long. IBM challenged Google’s claim, saying the speedup would be a thousandfold at best; even so, it was a milestone, and each additional qubit will make the computer twice as fast.

However, Google’s demo was strictly a proof of concept—the equivalent of doing random sums on a calculator and showing that the answers are right. The goal now is to build machines with enough qubits to solve useful problems. This is a formidable challenge: the more qubits you have, the harder it is to maintain their delicate quantum state. Google’s engineers believe the approach they’re using can get them to somewhere between 100 and 1,000 qubits, which may be enough to do something useful—but nobody is quite sure what.

And beyond that? Machines that can crack today’s cryptography will require millions of qubits; it will probably take decades to get there. But one that can model molecules should be easier to build.

Keep Reading

Most Popular

Here’s how a Twitter engineer says it will break in the coming weeks

One insider says the company’s current staffing isn’t able to sustain the platform.

Technology that lets us “speak” to our dead relatives has arrived. Are we ready?

Digital clones of the people we love could forever change how we grieve.

How to befriend a crow

I watched a bunch of crows on TikTok and now I'm trying to connect with some local birds.

Starlink signals can be reverse-engineered to work like GPS—whether SpaceX likes it or not

Elon said no thanks to using his mega-constellation for navigation. Researchers went ahead anyway.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.