Skip to Content

Power from the Air

Internet devices powered by Wi-Fi and other telecommunications signals will make small computers and sensors more pervasive.
February 23, 2016
Brendan Monroe; Daniel Berman

Power from the Air

  • Breakthrough

    Wireless gadgets that repurpose nearby radio signals, such as Wi-Fi, to power themselves and communicate.
  • Why it matters

    Freeing Internet-­connected devices from the constraints of batteries and power cords will open up many new uses.
  • Key players

    University of Washington; Texas Instruments; University of Massachusetts, Amherst

Even the smallest Internet-connected devices typically need a battery or power cord. Not for much longer. Technology that lets gadgets work and communicate using only energy harvested from nearby TV, radio, cell-phone, or Wi-Fi signals is headed toward commercialization. The University of Washington researchers who developed the technique have demonstrated Internet-connected temperature and motion sensors, and even a camera, powered that way.

Transferring power wirelessly is not a new trick. But getting a device without a conventional power source to communicate is harder, because generating radio signals is very power-intensive and the airwaves harvested from radio, TV, and other telecommunication technologies hold little energy.

Shyamnath Gollakota and his colleague Joshua Smith have proved that weak radio signals can indeed provide all an Internet gadget needs, using a principle called backscattering. Instead of generating original signals, one of their devices selectively reflects incoming radio waves to construct a new signal—a bit like an injured hiker sending an SOS message using the sun and a mirror. A gadget using the technique absorbs some energy from the signal it is modifying to power its own circuits.

“We can get communication for free,” says Gollakota. RFID chips for the contactless smart cards used in mass transit also rely on backscattering, but they require specialized reader devices and can communicate only within a few inches because the reflected signals are weak and the reader itself presents interference.

One version of the University of Washington technology, dubbed passive Wi-Fi, is being commercialized through a spin-off company, Jeeva Wireless. It lets battery-free gadgets connect with conventional devices such as computers and smartphones by backscattering Wi-Fi signals. In tests, prototype passive Wi-Fi devices have beamed data as far as 100 feet and made connections through walls. Doing that requires altering the software of a Wi-Fi access point to generate an extra signal for passive Wi-Fi devices to use, very slightly increasing its power consumption.

Smith says that passive Wi-Fi consumes just 1/10,000th as much power as existing Wi-Fi chipsets. It uses a thousandth as much power as the Bluetooth LE and ZigBee communications standards used by some small connected devices and has a longer range. A device using passive Wi-Fi to communicate—for example, a security camera—could power its other circuits using energy harvested from the Wi-Fi signals it is backscattering, or by feeding on other signals such as TV and radio broadcasts.

The researchers believe that tiny passive Wi-Fi devices could be extremely cheap to make, perhaps less than a dollar. In tomorrow’s smart home, security cameras, temperature sensors, and smoke alarms should never need to have their batteries changed.

Keep Reading

Most Popular

transplant surgery
transplant surgery

The gene-edited pig heart given to a dying patient was infected with a pig virus

The first transplant of a genetically-modified pig heart into a human may have ended prematurely because of a well-known—and avoidable—risk.

Muhammad bin Salman funds anti-aging research
Muhammad bin Salman funds anti-aging research

Saudi Arabia plans to spend $1 billion a year discovering treatments to slow aging

The oil kingdom fears that its population is aging at an accelerated rate and hopes to test drugs to reverse the problem. First up might be the diabetes drug metformin.

Yann LeCun
Yann LeCun

Yann LeCun has a bold new vision for the future of AI

One of the godfathers of deep learning pulls together old ideas to sketch out a fresh path for AI, but raises as many questions as he answers.

images created by Google Imagen
images created by Google Imagen

The dark secret behind those cute AI-generated animal images

Google Brain has revealed its own image-making AI, called Imagen. But don't expect to see anything that isn't wholesome.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.