Skip to Content

Climate change attribution

YOSHI SODEOKAYoshi Sodeoka

Climate change attribution

  • Why it matters

    It’s providing a clearer sense of how climate change is worsening the weather, and what we’ll need to do to prepare.
  • Key players

    World Weather Attribution, Royal Netherlands Meteorological Institute, Red Cross Red Crescent Climate Centre, University of Oxford
  • Availability

    Now

Researchers can now spot climate change’s role in extreme weather.

Ten days after Tropical Storm Imelda began flooding neighborhoods across the Houston area last September, a rapid-response research team announced that climate change almost certainly played a role.

The group, World Weather Attribution, had compared high-resolution computer simulations of worlds where climate change did and didn’t occur. In the former, the world we live in, the severe storm was as much as 2.6 times more likely—and up to 28% more intense.

Earlier this decade, scientists were reluctant to link any specific event to climate change. But many more extreme-weather attribution studies have been done in the last few years, and rapidly improving tools and techniques have made them more reliable and convincing.

This has been made possible by a combination of advances. For one, the lengthening record of detailed satellite data is helping us understand natural systems. Also, increased computing power means scientists can create higher-resolution simulations and conduct many more virtual experiments.

These and other improvements have allowed scientists to state with increasing statistical certainty that yes, global warming is often fueling more dangerous weather events. 

By disentangling the role of climate change from other factors, the studies are telling us what kinds of risks we need to prepare for, including how much flooding to expect and how severe heat waves will get as global warming becomes worse. If we choose to listen, they can help us understand how to rebuild our cities and infrastructure for a climate-changed world.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.