Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

  • Courtesy: 24M
  • Sustainable Energy

    A long-awaited battery that would cut electric-vehicle costs may finally be close

    24M is reducing manufacturing costs by stripping out extraneous materials—and just got $22 million to begin building its first commercial factory.

    In 2010, a pair of MIT materials scientists helped launch 24M, promising to deliver cheaper, better batteries by stripping out inactive materials in the electrodes.

    Eight years later, you still can’t buy the startup’s products. But in an interview last week, chief executive Rick Feldt said the “semisolid” lithium-ion batteries built in the company’s pilot lab have leapfrogged those on the market today in terms of energy density. 24M will begin working with an industrial partner next year to develop a small commercial plant and hopes to deliver its first products in 2020—five years past the company’s original time line.

    Higher energy density means batteries cost less, weigh less, and last longer, promising electric vehicles without the sticker shock or range anxiety, or phones that don’t demand an extra battery pack to get through the day.

    Sign up for The Download
    Your daily dose of what's up in emerging technology

    On Monday, the company will announce it has raised nearly $22 million in funding, which it will invest in the manufacturing facility and in research efforts to boost energy density further. Two Japanese companies led the round: the ceramics and electronics giant Kyocera Group and Itochu, a textiles and trading business.

    The initial target market for the batteries is electric vehicles, but the company has also highlighted the potential for its technology to improve grid energy storage (see “24M’s batteries could better harness wind and solar power”).

    24M aims to simplify the design of the lithium-ion battery. In standard versions like the ones in a Tesla vehicle, the electrodes that carry current into and out of a cell are arranged as a series of layers and then wound together into what’s known as a jelly roll. By using different materials, 24M can cast electrodes that are four to five times thicker, and immediately pair those anodes and cathodes together in a cell.

    This approach avoids a number of steps in the manufacturing process and significantly cuts down the need for inactive materials like copper, aluminum, and plastics. This, in turn, reduces costs and energy needs, and ensures that more of the electrodes themselves are dedicated to the core task of storing energy.

    The lab-scale version of 24M’s batteries have an energy density between 280 and 300 watt-hours per kilogram (Wh/kg). That exceeds the roughly 250 Wh/kg of most top-end batteries now on the market.

    The company is also working on a different technical path that could create lithium-ion batteries capable of reaching energy densities close to 500 Wh/kg. The company says they’ve already demonstrated that densities above 350 Wh/kg are feasible using this approach in the lab. But that relies on a very thick separator between the electrodes that would need to be scaled down to work on a commercial level.

    Many other companies and researchers are aggressively pursuing different paths to higher energy density, including alternative electrode chemistries and solid electrolytes (see “This battery advance could make electric vehicles far cheaper”).

    It’s still far from clear which companies and standards will ultimately win the prolonged race to higher density, but those that do could dominate massive and growing markets for powering gadgets, grids, vehicles, and someday even planes (see “A powerful new battery could give us electric planes that don’t pollute”).

    Update: An earlier version of this headline incorrectly said that the company's energy density improvements could double the range of electric vehicles.

    AI and robotics are changing the future of work.  Learn from the humans leading the way at EmTech Next 2019.

    Register now
    More from Sustainable Energy

    Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

    Want more award-winning journalism? Subscribe to Print + All Access Digital.
    • Print + All Access Digital {! insider.prices.print_digital !}*

      {! insider.display.menuOptionsLabel !}

      The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

      See details+

      12-month subscription

      Unlimited access to all our daily online news and feature stories

      6 bi-monthly issues of print + digital magazine

      10% discount to MIT Technology Review events

      Access to entire PDF magazine archive dating back to 1899

      Ad-free website experience

      The Download: newsletter delivery each weekday to your inbox

      The MIT Technology Review App

    /3
    You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.