Skip to Content
Artificial intelligence

Google just gave control over data center cooling to an AI

In a first, Google is trusting a self-taught algorithm to manage part of its infrastructure.
August 17, 2018
A Google datacenter in Council Bluffs, Iowa.

Google revealed today that it has given control of cooling several of its leviathan data centers to an AI algorithm.

Over the past couple of years, Google has been testing an algorithm that learns how best to adjust cooling systems—fans, ventilation, and other equipment—in order to lower power consumption. This system previously made recommendations to data center managers, who would decide whether or not to implement them, leading to energy savings of around 40 percent in those cooling systems.

Now, Google says, it has effectively handed control to the algorithm, which is managing cooling at several of its data centers all by itself.

“It’s the first time that an autonomous industrial control system will be deployed at this scale, to the best of our knowledge,” says Mustafa Suleyman, head of applied AI at DeepMind, the London-based artificial-intelligence company Google acquired in 2014. 

The project demonstrates the potential for artificial intelligence to manage infrastructure—and shows how advanced AI systems can work in collaboration with humans. Although the algorithm runs independently, a person manages it and can intervene if it seems to be doing something too risky.

The algorithm exploits a technique known as reinforcement learning, which learns through trial and error. The same approach led to AlphaGo, the DeepMind program which vanquished human players of the board game Go (see “10 Breakthrough Technologies: Reinforcement Learning”).

DeepMind fed its new algorithm information gathered from Google data centers and let it determine what cooling configurations would reduce energy consumption. The project could generate millions of dollars in energy savings and may help the company lower its carbon emissions, says Joe Kava, vice president of data centers for Google.

Kava says managers trusted the earlier system and had few concerns about delegating greater control to an AI. Still, the new system has safety controls to prevent it from doing anything that has an adverse effect on cooling. A data center manager can watch the system in action, see what the algorithm's confidence level is about the changes it wants to make, and intervene if it seems to be doing something untoward.

Energy consumption by data centers has become a pressing issue for the tech industry. A 2016 report from researchers at the US Department of Energy’s Lawrence Berkeley National Laboratory found that US data centers consumed about 70 billion kilowatt-hours in 2014—about 1.8 percent of total national electricity use.

But efforts to improve energy efficiency have been significant. The same report found that efficiency gains are almost canceling out increases in energy use by new data centers, although the total is expected to reach around 73 billion kilowatt-hours by 2020.

“Use of machine learning is an important development,” says Jonathan Koomey, one of the world’s leading experts on data center energy usage. But he adds that cooling accounts for a relatively small amount of a center’s energy use, around 10 percent.

Koomey thinks using machine learning to optimize the behavior of the power-hungry computer chips inside data centers could prove even more significant.  “I’m eager to see Google and other big players apply such tools to optimizing their computing loads," he says. "The possibilities on the compute side are tenfold bigger than for cooling.”

Deep Dive

Artificial intelligence

chasm concept
chasm concept

Artificial intelligence is creating a new colonial world order

An MIT Technology Review series investigates how AI is enriching a powerful few by dispossessing communities that have been dispossessed before.

open sourcing language models concept
open sourcing language models concept

Meta has built a massive new language AI—and it’s giving it away for free

Facebook’s parent company is inviting researchers to pore over and pick apart the flaws in its version of GPT-3

spaceman on a horse generated by DALL-E
spaceman on a horse generated by DALL-E

This horse-riding astronaut is a milestone in AI’s journey to make sense of the world

OpenAI’s latest picture-making AI is amazing—but raises questions about what we mean by intelligence.

labor exploitation concept
labor exploitation concept

How the AI industry profits from catastrophe

As the demand for data labeling exploded, an economic catastrophe turned Venezuela into ground zero for a new model of labor exploitation.

Stay connected

Illustration by Rose WongIllustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.