Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

  • Clockwise from top left: Getty / Getty / The Jetsons / Getty / Getty / Matt Groening / Getty / Flickr RV1864
  • Intelligent Machines

    Machines are coming for your March Madness office pool

    Alphabet’s Kaggle will award $100K to the machine-learning algorithms that come closest to picking this year’s bracket.

    March Madness—the NCAA college basketball championship playoffs—is among the most popular sporting events in the US, thanks in part to the wide-ranging contest that has evolved around predicting which teams will progress through the tournament. This year, almost $10.4 million is on the line in office pools or more organized competitions, and more than 40 million Americans will fill out their own versions of the playoff brackets to take part, according to the American Gaming Association. The chances of predicting a perfect bracket, which no one has ever done, are at least 1 in 128 billion and could be as remote as 1 in 9.2 quintillion.

    Now machine learning is taking a shot.

    Kaggle, the online platform for predictive modeling and analytics competitions that was acquired by Google parent company Alphabet last year, is hosting a competition for both the NCAA men’s and women’s tournaments. Kaggle provides a data set with information like tournament seeds going back to the 1984-85 season; final scores of all regular season, conference tournament, and NCAA tournament games since 1984-85; and every Division I men’s and women’s basketball play-by-play moment since 2009. It all adds up to more than 40 million data points.

    Competitors don’t fill out a traditional bracket; instead, they create and use models to predict how likely a team is to win each game. The model is judged on both the outcome of the game and the confidence that the model finds in its prediction. So if a model is 99 percent certain that a team will win and it turns out to be right, it gets more points than one with a correct prediction that was only 95 percent sure. If a model is very confident and incorrect, however, it will lose more points. This is to make it harder to win with dumb luck or random chance. A prize pool of $100,000 is to be divided among the top three brackets for both tournaments. Entries are due on Thursday, and 500 teams are already signed up.

    Sign up for the The Algorithm
    Artificial intelligence, demystified

    By signing up you agree to receive email newsletters and notifications from MIT Technology Review. You can change your preferences at any time. View our Privacy Policy for more detail.

    But it’s unclear that machine learning is ready to take on bracketology, which might be more of an art than 40 million data points would have you believe. Since college teams change players and team rosters from season to season, the algorithms might not even have the right data to parse in search of patterns.

    And then there are the unquantifiable elements, like players who “click” or a team on a streak. The cities that host tournament games can also influence a team’s performance in ways an algorithm may not anticipate. For instance, games in a city like Denver could lead to altitude issues for teams accustomed to playing at sea level, or a particularly rowdy crowd could help a team gain momentum in the last moments. This year, the Big Ten teams have had two weeks off before March Madness for the first time ever, and their players may be better rested—or rustier—than teams from other conferences. An algorithm can’t take into account an event that it has never seen before. Upsets are called upsets for a reason; if machine learning could predict them, the term would become moot.

    “I actually think that tournaments like NCAA [March Madness] are not the sweet spot for machine learning,” wrote Kaggle CEO Anthony Goldbloom, on a Reddit AMA. “There are many fewer March Madness games than ad clicks/fraud events etc.”

    Kaggle has hosted four previous March Madness competitions, although this is the first season with prize money. Last year’s winner, Andrew Landgraf, based his model on previous winners’ algorithms, but with a twist. He considered what other entrants in Kaggle’s competition might do and directed his algorithm to take advantage of their potential mistakes. People do this with office pools all the time: if you were in an office with a bunch of Duke fans, betting against Duke might leave you with the best bracket if the Blue Devils were to lose. Even with his carefully planned model, Landgraf says, luck was a huge part of his success.

    Eventually, algorithms might be good enough to predict things like hot streaks, but in the meantime, human-machine collaboration might represent the future of bracketology. Betting syndicates believe so—they’re already using both predictive analytics and data from human-powered online gambling markets to place their wagers, according to Adam Kucharski, a researcher and author of The Perfect Bet: How Science and Math Are Taking the Luck Out of Gambling.

    “Despite all their flaws, betting markets are a good way to canvass a crowd’s knowledge,” Kucharski says. “Understanding that human element can be very useful.”

    The results of Kaggle’s tournament can be judged by the imperfect brackets of years past. Thirty-nine games is the closest anyone has come to a perfect result, so that’s an easy benchmark for success. And if one of Kaggle’s algorithmic contenders or a human-machine collaboration achieves the ultimate goal, there are some lucrative rewards waiting. Billionaire Warren Buffett has a long-standing offer to award any of his employees who comes up with a perfect bracket a million dollars a year for life.

    But once we get a perfect bracket, what’s next? Kaggle’s competition starts after the selection of all 64 teams. The next challenge may be predicting the tournament winners before you know who’s even in the running.

    Keep up with the latest in AI at EmTech Digital.
    Don't be left behind.

    March 25-26, 2019
    San Francisco, CA

    Register now
    More from Intelligent Machines

    Artificial intelligence and robots are transforming how we work and live.

    Want more award-winning journalism? Subscribe and become an Insider.
    • Insider Plus {! insider.prices.plus !}* Best Value

      {! insider.display.menuOptionsLabel !}

      Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

      See details+

      Print + Digital Magazine (6 bi-monthly issues)

      Unlimited online access including all articles, multimedia, and more

      The Download newsletter with top tech stories delivered daily to your inbox

      Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

      10% Discount to MIT Technology Review events and MIT Press

      Ad-free website experience

    • Insider Basic {! insider.prices.basic !}*

      {! insider.display.menuOptionsLabel !}

      Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

      See details+

      Print Magazine (6 bi-monthly issues)

      Unlimited online access including all articles, multimedia, and more

      The Download newsletter with top tech stories delivered daily to your inbox

    • Insider Online Only {! insider.prices.online !}*

      {! insider.display.menuOptionsLabel !}

      Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

      See details+

      Unlimited online access including all articles, multimedia, and more

      The Download newsletter with top tech stories delivered daily to your inbox

    /3
    You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.