Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Paula Hammond ’84, PhD ’93

Fighting a giant foe at a tiny scale

Paula Hammond’s research focuses on using nanoscale biomaterials to attack what she calls “a supervillain with incredible superpowers”—cancer. Using targeted nanoparticles, she is attempting to turn off the natural defenses of mutant genes and deliver a deadly punch to the cancer cell. Her work will soon be translated into clinical practice through partnerships with pharmaceutical companies, entrepreneurial partners, and startups in health care.

“Using molecular engineering, we can actually design a superweapon that can travel through the bloodstream,” said Hammond in her 2015 presentation for the live show TED Talks: Science and Wonder. “It has to be tiny enough to get through the bloodstream, it has got to be small enough to penetrate the tumor tissue, and it’s got to be tiny enough to be taken up inside the cancer cell. To do this job well, it has to be about one one-thousandth the size of a human hair.”

Long interested in reading and the arts, Hammond considered writing children’s novels before she decided to study chemical engineering as an undergraduate at MIT. After working at Motorola for two years, she earned her master’s degree at Georgia Tech and then returned to MIT for a new PhD program in polymer science. In 1995 Hammond joined the MIT faculty, where she is now the David H. Koch Professor of Engineering and head of the Department of Chemical Engineering.

This story is part of the September/October 2017 Issue of the MIT News magazine
See the rest of the issue
Subscribe

During her 2003 sabbatical, she began to focus on biomaterials. As someone entering that field in mid-career, she says, “I brought a new perspective, with a materials design approach.”

Since then, she has merged design and polymer engineering to create breakthroughs in drug delivery technology. By layering negatively and positively charged molecules, Hammond and her team can create coated meshes and wound dressings that gradually release combinations of an antibiotic and a growth factor to help the wound heal, support bone regeneration, or control the scarring that can result from a burn or tissue injury.

This same layering concept is used to treat cancer, says Hammond. By taking a nanoparticle core loaded with drugs that kill cancer cells, surrounding that core with layers that contain silencing RNA to turn off the genes that promote cancer survival, and adding a final outer layer that helps the nanoparticle reach the tumor, it is possible to target drug-resistant cancer cells.

Hammond, who was profiled in MIT Technology Review in 2011 and is a member of the Koch Institute for Integrative Cancer Research, was elected to the National Academy of Engineering in 2017 and the National Academy of Medicine in 2016. She is also a member of the American Academy of Arts and Sciences.

The AI revolution is here. Will you lead or follow?
Join us at EmTech Digital 2019.

Register now
Next in MIT News
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.