Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

AI Agents Learn to Work Together by Wrangling Virtual Swine

Collaboration and cooperation are crucial elements of human intelligence. Now some algorithms are learning how to work together.

Wrangling a pig—even a virtual one—is much easier if you get a friend to help. This much seems clear from a contest organized by Microsoft researchers to test how artificially intelligent agents could cooperate to solve tricky problems. How best to cooperate with your pig-wrangling pal is another question.

The competition addresses an area of artificial intelligence that has had relatively little attention so far. AI researchers often develop software capable of performing a specific human task, such as playing chess or Go, and then measure it according to its ability to defeat a human player. However, a great deal of human intelligence involves communication, social intelligence, and theory of mind, or the ability to anticipate and interpret another intelligent agent’s intentions.

The project also hints at how humans and AI systems might eventually work together to achieve more than the sum of their parts. “This is part of a broader trend of rethinking AI as augmented intelligence rather than artificial intelligence,” says Oren Etzioni, CEO of the Allen Institute for Artificial Intelligence. 

For the Microsoft contest, AI agents worked together inside Project Malmo, a special version of the open-ended computer game Minecraft. Microsoft’s researcher designed this environment to make it straightforward to import and test different AI techniques. Much further progress will be needed before AI agents can team up in useful ways or assist humans, but the contest offers a way to test some early ideas.

Subscribe to Weekend Reads
Our guide to stories in the archives that put technology in perspective.
Manage your newsletter preferences

For the competition, agents could try to control and catch an unruly virtual pig either on their own or by teaming up with another AI agent, earning points each time.

The top teams in the Malmo Collaborative AI Challenge used cutting-edge machine-learning approaches such as deep learning to train their agents to work together. This entailed feeding them large amounts of data. But some participants also made use of older, less fashionable approaches that involve give a virtual agent hard-coded knowledge and understanding.

The winners of the contest, a team from the University of Oxford in the U.K., used reinforcement learning, a kind of machine learning inspired by the way animals learn through experimentation (see “10 Breakthrough Technologies: Reinforcement Learning”). Their agents experienced positive reinforcement whenever they successfully worked together to grab the pig.

Katja Hofmann, the lead researcher on Microsoft’s Malmo project, notes that many teams combined different approaches. “There was no single type of approach that emerged as a clear winner,” she adds, saying it’s likely that hybrid approaches “will prove particularly promising directions for future research.”

The pig-wrestling challenge takes inspiration from a thought experiment known as the Stag Hunt, which explores concepts within game theory, a branch of mathematics concerned with cooperation and negotiation strategies. The idea is that two hunters must decide whether to hunt a hare on their own or team up to snag the bigger prize of a stag.

The top teams involved in the contest, judged according to the score they achieved as well as the novelty of their work, will receive a $20,000 research grant and a place at Microsoft’s Research AI Summer School.

Pedro Domingos, a professor at the University of Washington who studies machine learning and data mining, says training AI software inside simulated environments has its drawbacks. Software can become overoptimized for that particular environment and therefore less useful in the real world, he says, although more sophisticated simulated worlds are starting to change this.

Domingos adds that cooperation between humans is so complex and subtle that it is hard to imagine the Microsoft project producing genuinely useful approaches. However, despite some skepticism, he is encouraged by the project.

“It’s still early days in this area, and Minecraft is an environment with a lot of possibilities,” Domingos says. “[It’s] richer than things that have been used before, so it certainly seems worth trying.”

Hear more about deep learning at EmTech MIT 2017.

Register now

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.