Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Organic 3-D Printing

3-D printing goes organic.

Humans have printed on paper for centuries. But now MIT researchers have found a way to print with cellulose, paper’s primary ingredient. The world’s most abundant organic polymer, and the main one that gives wood its mechanical properties, cellulose is inexpensive, biorenewable, biodegradable, and very chemically versatile.

Previous attempts to use cellulose for 3-D printing have been limited because heated cellulose thermally decomposes before it becomes able to flow, and high-concentration cellulose solutions are too viscous to be easily extruded.

This story is part of the May/June 2017 Issue of the MIT News magazine
See the rest of the issue
Subscribe

The MIT team works with cellulose acetate. This material, which is easily made from cellulose by acetylating some of its hydroxyl groups, can be dissolved in acetone and extruded through a nozzle. After extrusion, the acetone quickly evaporates and the cellulose acetate solidifies in place. A subsequent optional treatment replaces the acetate groups with groups found on the original cellulose molecule to strengthen the printed parts.

“After we 3-D-print, we restore the hydrogen bonding network through a sodium hydroxide treatment,” says postdoc Sebastian Pattinson, who coauthored a paper on the research with associate professor A. John Hart in Advanced Materials Technologies. He says the results are stronger and tougher than many materials commonly used for 3-D printing, including acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA).

Because most existing extrusion-based 3-D printers rely on heating polymer to make it flow, their production speed is limited by the amount of heat that can be delivered to the polymer without damaging it. The new room-­temperature cellulose process, which relies on evaporation of the acetone to solidify the part, could potentially be faster, Pattinson says.

Be there when AI pioneers take center stage at EmTech Digital 2019.

Register now
Next in MIT News
Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivered daily

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.

MIT News = for alumni only.

Are you an MIT alum?
Sign in now to read all MIT alumni news and class notes— or to manage your magazine subscription.

Sign in and read on