Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Graphene Goes 3-D

Strong and lightweight form of carbon puts on bulk, keeps its strength.

Above: This 3-D-printed gyroid model shows the shape predicted for compressed graphene.

Graphene, a two-dimensional form of carbon, is thought to be the strongest of all known materials, but researchers have had a hard time translating that strength into three dimensions for practical use. Now, a team of MIT researchers has designed one of the strongest lightweight materials known, by compressing and fusing flakes of graphene. The new material, a sponge-like configuration, can be 10 times as strong as steel.

This story is part of the March/April 2017 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

The findings show that the benefit of the new three-­dimensional forms has more to do with their unusual geometrical configuration than with the material itself, which suggests that other materials could be adapted into strong, lightweight forms by creating similar geometric features.

Other groups had suggested the possibility of such lightweight structures, but lab experiments had failed to match predictions, sometimes having orders of magnitude less strength than expected. The MIT team, led by Markus Buehler, head of the Department of Civil and Environmental Engineering, decided to analyze the material’s behavior down to the level of individual atoms. They were able to produce a mathematical framework that very closely matches experimental observations.

Two-dimensional materials—basically, flat sheets that are just one atom thick—have exceptional strength as well as unique electrical properties. But because of their extraordinary thinness, “they are not very useful for making 3-D materials that could be used in vehicles, buildings, or devices,” Buehler says. “What we’ve done is to realize the wish of translating these 2-D materials into three-dimensional structures.”

The team simulated compressing small flakes of graphene using heat and pressure, producing a strong, stable structure that takes the form of gyroids, shapes with an enormous surface area in proportion to their volume. They created a variety of 3-D models for testing. In the simulations, one of their samples had just 5 percent the density of steel but 10 times the strength.

Buehler says the strength of their 3-D graphene material, composed of complex curved surfaces, resembles what happens with sheets of paper. Paper has little strength along its length and width, and it can be easily crumpled up, but when it’s rolled into a tube that is stood on its end, it can support substantial weight. Similarly, the geometric arrangement of the graphene flakes after treatment would naturally form a very strong configuration, he says.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.