Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Clean Fuels from Greenhouse Gas

New material could help convert power-plant emissions into transportation fuels.

A new catalyst material could eventually offer a way to produce fuels—including gasoline, jet fuel, and diesel—from carbon dioxide. Such conversion, if it can be done at large scale, could make it possible to continue using the world’s existing infrastructure for fuel storage and distribution without adding any net greenhouse-gas emissions to the atmosphere.

The innovation, a porous silver electrode material that acts as a catalyst, makes it feasible to convert carbon dioxide and water to carbon monoxide and hydrogen. That reaction represents the first step toward converting the greenhouse gas into other chemicals, including liquid fuels, explains Yogesh Surendranath, PhD ’11, an assistant professor of chemistry, who was the senior author on a study describing the work. Established methods exist for converting carbon monoxide and hydrogen to valuable fuels or other products. “The problem in CO2 conversion is how to selectively convert it,” Surendranath says—that is, how to end up with carbon monoxide and hydrogen gas in the desired proportion to provide the feedstock for the next chemical processing steps. The new system, he says, provides just that kind of selective, specific conversion pathway.

Surendranath says that by simply “changing the mesostructure” of the porous material—that is, by tuning the lengths of its pores—it’s possible to get the system to produce the desired proportion of carbon monoxide in the output gas.

This story is part of the January/February 2017 Issue of the MIT News magazine
See the rest of the issue
Subscribe

Surendranath and his MIT colleagues made the catalyst material by depositing tiny polystyrene beads onto a conductive base. After electrodepositing silver on the surface, they dissolved away the beads, leaving pores whose size and length are determined by the diameter of the beads and the thickness of the porous silver film.

Varying the lengths of the pores produces a double effect. As the pores get longer, the catalyst promotes the production of carbon monoxide from carbon dioxide up to three times more strongly. It also suppresses by a factor of up to 10 the production of hydrogen gas from the water that is mixed with the carbon dioxide. By changing the pore dimensions, the production of carbon monoxide can be varied to make up anywhere from 5 to 85 percent of the reaction’s output. For some applications, the hydrogen can also be a useful product.

Surendranath says the work provides key insights to help develop carbon-­neutral replacements for fossil-fuel systems—without requiring changes in the existing infrastructure of gas stations, delivery vehicles, and storage tanks.

AI is here. Will you lead or follow? Countdown to EmTech Digital 2019 has begun.

Register now
Next in MIT News
Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivered daily

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.

MIT News = for alumni only.

Are you an MIT alum?
Sign in now to read all MIT alumni news and class notes— or to manage your magazine subscription.

Sign in and read on