Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

A View from Carol Reiley

Deep Driving

A revolutionary AI technique is about to transform the self-driving car.

  • October 18, 2016

When the Google self-driving-car project began about a decade ago, the company made a strategic decision to build its technology on expensive lidar and detailed mapping. Even today, Google’s self-­driving technology still relies on those two pillars. While that approach is great up to a point—we have good algorithms for using lidar and camera data to localize a car on the map—it’s still not good enough. Driving on complicated, ever-changing streets involves perception and decision-making skills that are inherently uncertain (see “Your Driverless Ride Is Arriving”).

Now an artificial-intelligence technology called deep learning is being used to address the problem. Rather than using the old method of hand-coded algorithms, we can now use systems that program themselves by learning from examples of how a system ought to behave in response to an input. Deep learning is now the best approach to most perception tasks, as well as to many low-level control tasks.

This story is part of our November/December 2016 Issue
See the rest of the issue
Subscribe

A self-driving car needs a perception system to sense things that are moving (cars, people) as well as things that aren’t (lampposts, curbs). Self-driving vehicles detect dynamic objects using sensors such as cameras, laser scanners, and radar. Of these three, cameras are the cheapest, but they’re also used the least because it’s hard to translate images into detected objects. Using deep learning, we’re seeing dramatic improvements in the car’s ability to understand and make use of such images.

We’re also seeing significant gains from something called “multitask deep learning,” in which a system trained simultaneously to detect lane markings, cars, and pedestrians does better than three separate systems trained in isolation—since the single network can share information among the separate tasks.

Instead of relying entirely on a pre-computed map, the car can use the map as one of many data streams, combining it with sensor inputs to help it make decisions. (A neural network that knows from map data where crosswalks are, for example, can more accurately detect pedestrians trying to cross than one that relies solely on images.)

Deep learning can also alleviate one of the biggest issues identified by many who have ridden in a self-driving car—a “jerky” feel to the driving style, which sometimes leads to motion sickness. But a car trained using examples of humans driving can offer a ride that feels more natural.

It’s still early. But just as deep learning did with image search and voice recognition, it is likely to forever change the course of self-driving cars.

Carol Reiley is the cofounder of Drive.ai.

Keep up with the latest in AI at EmTech Digital.

The Countdown has begun.
March 25-26, 2019
San Francisco, CA

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.