Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Spray That Stays

New technique keeps pesticides from bouncing off plants.

When farmers spray their fields with pesticides or orange growers spray water on their crops to prevent frost damage, only about 2 percent of the spray sticks to the plants. The rest of the droplets either bounce right back off the leaves or get blown away by the wind. All that waste costs money and, in the case of pesticide application, contributes to pollution of waterways and exposes farmers unnecessarily to hazardous chemicals. But a team of MIT researchers has found a way to fix that.

A clever combination of inexpensive additives allowed the researchers, led by associate professor of mechanical engineering Kripa Varanasi and grad student Maher Damak, to drastically cut down on the amount of liquid that bounces off, potentially making it possible to use just one-tenth as much pesticide or other spray as would otherwise be needed.

Previous attempts to reduce this droplet bounce rate have relied on additives such as surfactants, soaplike chemicals that reduce the surface tension of the droplets and cause them to spread more. But tests have shown that this yields only a small improvement; the speedy droplets bounce off while the surface tension is still changing, and the surfactants cause the spray to form smaller droplets that are more easily blown away.

This story is part of the November/December 2016 Issue of the MIT News magazine
See the rest of the issue
Subscribe

The new approach uses two different kinds of polymer additives, each added to a separate portion of the spray. One gives its part of the solution a negative electric charge; the other causes a positive charge. When two of the oppositely charged droplets meet on a leaf, they form a hydrophilic (water-attracting) “defect” that sticks to the surface and makes other droplets more likely to adhere.

The project was developed in collaboration with the MIT Tata Center for Technology and Design, which aims to develop technologies that can benefit communities in India and throughout the developing world. Spraying of pesticides there is typically done manually with tanks carried on farmers’ backs, and since the cost of pesticides can be a significant part of a farmer’s budget, reducing the amount that’s wasted could improve the overall economics of small-scale farming. It could also reduce soil and water pollution and spare farmers excessive exposure to the spray chemicals. And for those spraying water, limiting the waste of often-limited freshwater resources can be significant.

“We can use normal sprayers, with two tanks at a time, and add one material to one tank and the oppositely charged material to the other,” Damak says. The farmer “would do everything as usual, just adding our solutions.”

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Next in MIT News
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.