We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Making High Tech from Coal

Jeffrey Grossman sees this fossil fuel as a raw material for electronics.

Maybe we’ve been looking at coal all wrong. Instead of just burning it, thus ignoring the molecular complexity of this highly varied material, says Professor Jeffrey ­Grossman, we should be harnessing the real value of that chemistry. He and his research team think that coal could become the basis for solar panels, batteries, or electronic devices.

As a first demonstration of what they see as a broad range of potential high-tech uses for this traditionally low-tech material, Grossman, doctoral student Brent Keller, and research scientist Nicola ­Ferralis made a simple electrical heating device. In the process, they also characterized in detail the chemical, electrical, and optical properties of thin films of four different kinds of coal: anthracite, lignite, and two bituminous types. Their findings were reported earlier this year in the journal Nano Letters.

“When you look at coal as a material, and not just as something to burn, the chemistry is extremely rich,” says Grossman, a professor of environmental systems in the Department of Materials Science and Engineering (DMSE). “Could we leverage the wealth of chemistry in things like coal to make devices that have useful functionality?” The answer, he says, is a resounding yes.

This story is part of the July/August 2016 Issue of the MIT News Magazine
See the rest of the issue
These test devices made from coal span seven orders of magnitude in conductivity.

It turns out that unpurified, naturally occurring coal varieties have a range of electrical conductivity spanning seven orders of magnitude. That means that some variety of coal could inherently provide whatever electrical properties are needed for a particular component.

“The material has never been approached this way before,” says Keller, who carried out much of the work as part of his doctoral thesis in DMSE. To learn about its properties, he developed a method for making thin films of coal, which could then be tested in detail and used for device fabrication.

This new, detailed characterization is just the tip of a large iceberg, the team says. The four varieties selected are just a few of the hundreds that exist, all with what are probably significant differences. And preparing and testing the samples was, from the outset, an unusual process for materials scientists. “We usually want to make materials from scratch, carefully combining pure materials in precise ratios,” says Ferralis, also in DMSE. In this case, though, the process involves “selecting from among this huge library of materials,” all with their own different variations.

The simple heating device the team made as a proof of principle demonstrates how to use the material, from grinding the coal to depositing it as a thin film and making it into a functional electronic device. Now, they say, the doors are opened for a wide variety of potential applications through further research.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
These test devices made from coal span seven orders of magnitude in conductivity.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.