Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Just-in-Time Pharmacy

System can make small batches of drugs on demand.

MIT researchers have developed a compact, portable pharmaceutical manufacturing system that can be reconfigured to produce a variety of drugs on demand. Just as an emergency generator supplies electricity to handle a power outage, this system could be rapidly deployed to produce drugs needed to handle an unexpected disease outbreak, or to prevent a drug shortage caused by a manufacturing plant shutdown.

“Think of this as the emergency backup for pharmaceutical manufacturing,” says Allan Myerson, professor of the practice of chemical engineering and a project leader. “The purpose is not to replace traditional manufacturing; it’s to provide an alternative for these special situations.”

Manufacturing drugs with batch processing, the traditional method, can take weeks or months. Active ingredients are synthesized in chemical manufacturing plants and then shipped to other sites to be converted into a form that can be given to patients, such as tablets, drug solutions, or suspensions. This system offers little flexibility to respond to surges in demand and is susceptible to severe disruption if one of the plants has to shut down.

This story is part of the July/August 2016 Issue of the MIT News Magazine
See the rest of the issue
Subscribe
This machine built by MIT researchers can be reconfigured to manufacture several different drugs, including Benadryl, Valium, and Prozac.

The MIT team built a system that can produce four drugs formulated as solutions or suspensions: Benadryl, lidocaine, Valium, and Prozac. Using this apparatus, the researchers can manufacture about 1,000 doses of a given drug in 24 hours.

Key to the continuous system are new chemical reactions that can occur as the reactants flow through relatively small tubes, much smaller than the huge vats in which most pharmaceutical reactions now take place. Batch processing is limited by the difficulty of cooling these vats, but with the flow system, reactions producing a great deal of heat can run safely.

Many of the compounds the researchers produced had never been synthesized in a continuous flow platform, says ­Timothy Jamison, the head of MIT’s Department of Chemistry and one of the project leaders. “That presents a lot of challenges even if there is a good precedent from the batch perspective,” he says.

By swapping in different components, the researchers can easily reconfigure the system to produce different drugs. “Within a few hours we could change from one compound to the other,” says chemical engineering professor Klavs Jensen, another of the project leaders.

This type of system could be especially useful in regions with few pharmaceutical storage facilities, because drugs can be produced on demand, eliminating the need for long-term storage.

“The dosages don’t have to have long-term stability,” Myerson says. “People line up, you make it, and they take it.”

Technology is changing faster than ever before.
At EmTech MIT, hear experts’ opinions on the future of their industries.

Learn more and register
This machine built by MIT researchers can be reconfigured to manufacture several different drugs, including Benadryl, Valium, and Prozac.
Next in MIT News
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.