Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Super-Skinny Solar Cells

MIT researchers invent new method to make streamlined photovoltaics.

Imagine solar cells so thin, flexible, and lightweight that they could be placed on almost any material or surface.

Three MIT researchers have demonstrated just such a technology: the thinnest, lightest solar cells ever produced. Though it may take years to develop into a commercial product, the laboratory demonstration by MIT professor Vladimir Bulović, research scientist Annie Wang, and doctoral student Joel Jean shows a new approach to making solar cells that could help power the next generation of portable electronic devices.

Bulović, MIT’s associate dean for innovation, says the key to the new approach is a single process to make the solar cell, the substrate that supports it, and a protective coating to shield it from the environment. The substrate is made in place and never needs to be handled, cleaned, or removed from the vacuum chamber in which it is fabricated, thus minimizing exposure to dust or other contaminants that could degrade the cell’s performance.

This story is part of the May/June 2016 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

“The innovative step is the realization that you can grow the substrate at the same time as you grow the device,” Bulović says.

The MIT team made a solar cell so thin and lightweight it can be draped on a soap bubble without popping it.

The team used a common flexible polymer called parylene, a widely used plastic coating, as both the substrate and the overcoating, and an organic material called DBP as the primary light-absorbing layer. The entire process takes place in a vacuum at room temperature and does not involve any solvents. (In contrast, conventional solar-cell manufacturing requires high temperatures and harsh chemicals.) In this case, both the substrate and the solar cell are “grown” using established vapor deposition techniques.

The result is an ultrathin solar cell that is exceptionally powerful for its weight. Whereas a typical silicon-based solar module, whose weight is dominated by a glass cover, may produce about 15 watts of power per kilogram of weight, the new cells have already demonstrated an output of six watts per gram—about 400 times higher.

To demonstrate just how thin and lightweight the cells are, the researchers draped a working cell on top of a soap bubble. It didn’t pop.

“It could be so light that you don’t even know it’s there, on your shirt or on your notebook,” Bulović says. “These cells could simply be an add-on to existing structures.”

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.
The MIT team made a solar cell so thin and lightweight it can be draped on a soap bubble without popping it.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.