Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

An Off Switch for Autism

Neuroscientists reverse autism symptoms in mice.

About 1 percent of people with autism are missing a gene called SHANK3, which is critical for brain development. Without this gene, individuals develop many behaviors typically associated with the disorder. In a study of mice, MIT researchers led by brain and cognitive sciences professor ­Guoping Feng have now shown that they can reverse some of those behavioral symptoms by turning the gene back on later in life, allowing the brain to rewire itself.

The Shank3 protein, found in synapses, helps organize the hundreds of other proteins that are necessary to coördinate a neuron’s response to incoming signals. Feng previously found that a missing or defective SHANK3 gene in mice leads to synaptic disruptions that can produce symptoms including compulsive behavior, avoidance of social interaction, and anxiety. He also showed that some synapses in these mice, especially in a part of the brain called the striatum, have far fewer dendritic spines—small buds on neurons’ surfaces that help transmit synaptic signals.

In the new study, published in Nature, he and colleagues genetically engineered mice so that their SHANK3 gene was turned off during embryonic development but could be turned back on by adding tamoxifen to the mice’s diet.

This story is part of the May/June 2016 Issue of the MIT News magazine
See the rest of the issue
Subscribe

When the researchers turned on SHANK3 in young adult mice (two to four and a half months after birth), they were able to eliminate the mice’s repetitive behavior and their tendency to avoid social interaction. At the cellular level, the team found that the density of dendritic spines dramatically increased in the striatum of treated mice, demonstrating the structural plasticity in the adult brain.

However, the mice’s anxiety and some motor coördination symptoms persisted. Feng suspects that these behaviors are probably caused by abnormal circuits irreversibly formed during early development.

When the researchers turned on SHANK3 earlier in life, only 20 days after birth, the mice’s anxiety and motor coördination did improve. The researchers are now working on defining the critical periods for the formation of these circuits, which could help them determine the best time to try to intervene.

“Some circuits are more plastic than others,” Feng says. “Once we understand which circuits control each behavior and understand what exactly changed at the structural level, we can study what leads to these permanent defects and how we can prevent them from happening.”

For the small population of people with SHANK3 mutations, the findings suggest that new genome-editing techniques could in theory be used to repair the defective gene and improve the symptoms, even later in life. Feng believes that scientists may also be able to develop more general approaches that would apply to a larger population.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
Next in MIT News
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.