We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

A Xerox Machine for Super Solar Panels

Researchers at PARC are working on a way to cheaply print efficient solar cells at a large scale.

The technology giant that’s synonymous with photocopied documents has set its sights on highly efficient solar panels.

Researchers at PARC, an R&D-focused subsidiary of Xerox, say they’re developing a new digital printing process that could make it much cheaper to mass-produce concentrated solar photovoltaic systems. Such systems can dramatically increase the efficiency of solar cells by using lenses to concentrate and focus the sunlight onto small cells.

Increasing efficiency could be an effective way to bring down the cost of solar modules, whose price has already fallen dramatically during the past several years. Much of the cost of conventional silicon systems is now due to things like wiring, installation, and permitting. More efficient panels would mean we need fewer of them to produce the same amount of power—which in turn cuts the costs of hardware and installation. But concentrated photovoltaic technology has so far failed to gain traction because it’s still too expensive and bulky to compete with conventional silicon solar panels.

PARC hopes to make the technology more competitive by shrinking the components and designing a new flat-panel form factor, and by developing a relatively inexpensive manufacturing process. The new process will build on a larger effort by PARC researchers to invent a new kind of printer that can precisely deposit “inks” made of tiny semiconductor chips, called “chiplets,” by using assembly principles similar to those behind Xerox photocopiers.

So far, they have demonstrated only the ability to make small-scale devices by wiring together a few printed chiplets. But eventually the technique could allow people to design and print very large arrangements of small electrical and optical components similar to the way they would design and print a document using a Xerox printer, say the PARC researchers. They say this should make it possible to develop a new class of electronic devices made of printed arrangements of various kinds of chiplets.

The first real application could be new kind of solar power system. In August, the PARC group, along with collaborators at Sandia National Laboratories, won a grant from ARPA-E to apply the innovative printing process to build microscale arrays of photovoltaic cells on a flat panel, and the group has three years to do it (see “DOE Attempts to Jump-Start Concentrated Solar”).

In recent years, engineers have developed ways to shrink the components needed for concentrating and focusing sunlight down to the millimeter scale. Researchers at Sandia National Laboratories have developed microscale solar cells that can be paired with those concentrating elements in a flat-panel design. But the smaller the components, the more individual parts there are to assemble for a given area, and they must be arranged with extreme precision, says Patrick Maeda, a principal engineer at PARC.

The existing method for doing this, which relies on an automated system that picks up individual components and places them in target spots, is much too expensive to achieve ARPA-E’s ambitious cost objective, says Maeda. The PARC researchers say the new printing approach could lead to a high-speed manufacturing process that is orders of magnitude cheaper for building these microscale systems over large areas.

The big challenge now is to design and build a system with hundreds of chiplets wired together, says Eugene Chow, a PARC principal scientist. In three years the group must deliver an electrically functional array of solar cell chiplets. Such a “backplane” could then be combined with miniature optical components that can be made using methods commonly used to manufacture large-area optical films used in flat-panel displays.

The ARPA-E funding has pushed the group to “get more serious about industrial applications” for the chiplet printing process, says Chow. “But we still have a long way to go.”


Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.