Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Texas Woman Is the First Person to Undergo Optogenetic Therapy

Doctors don’t yet know if it worked, but the implications of an optogenetics trial could be significant for patients suffering from blindness, Parkinson’s, or schizophrenia.

A blind woman in Texas is the first person to undergo therapy based on an emerging technology called optogenetics. If successful, the therapy will create light-sensing cells in one of her eyes and enable her to see again.

This patient and others being recruited for a clinical trial have a degenerative disease called retinitis pigmentosa. In this disease, the light-sensitive cells of the retina gradually die off. These cells pass electrical signals on to nerves that convey them to the brain.

The therapy uses optogenetics, a technology that uses a combination of gene therapy and light to precisely control nerves. The therapy should make certain nerve cells in the woman’s eye, called ganglion cells, light-sensitive. The eye was injected with viruses carrying DNA from light-sensitive algae. If it works, the cells will do what the healthy retina’s cones and rods do: fire off an electrical signal in response to light, restoring some vision.

The patient was treated in late February in Dallas by doctors led by David Birch of the Retina Foundation of the Southwest. The therapy was developed by RetroSense Therapeutics of Ann Arbor, Michigan.

Beyond the implications for treating blind people, this trial is also being watched by the neuroscience community. If it’s successful, it suggests that optogenetics has promise not just as a lab tool for studying the brain circuits that underlie diseases like Parkinson’s and schizophrenia, but also as a potential therapy for treating people afflicted with them.

“This is a great early test of optogenetics, because the eye is so easily accessible,” says Todd Sherer, a neuroscientist and CEO of the Michael J. Fox Foundation for Parkinson’s Research. The foundation is funding research on using optogenetics to study the circuits underlying Parkinson’s.

Over the next year, Retina Foundation doctors will monitor the first patient’s eye for light sensitivity as they administer potentially three additional doses of the gene therapy.

They’re following her for any side effects, and also monitoring her for any vision in the treated eye.

The aim is not to get her to see with 20/20, full-color vision, but to endow the eye that currently has zero light perception with some vision. “Small things like being able to know someone is in the room with them, or being able to cross the road, are a big deal,” says Birch.

It’s especially exciting because there are currently no treatments for retinitis pigmentosa except a retinal prosthesis that uses an implanted chip to stimulate cells at the back of the eye, notes Jacque Duncan, professor of clinical ophthalmology at the University of California, San Francisco.

Vision that works through light-sensitive ganglion cells will likely be different than vision that relies on a healthy retina. When you go outside, for instance, it can be about 10,000 times brighter than inside. Healthy retinas rapidly adapt their sensitivity to adjust to this, but the light-sensing cells created by the gene therapy will not likely be able to adapt. For that reason it may be necessary for the RetroSense therapy, if it works, to be coupled with some kind of video-projection glasses that can perform these adjustments and tailor the incoming light to the treated eye, sending a brighter signal indoors than it does outdoors, for example.

Meanwhile, the trial continues to recruit other retinitis pigmentosa patients, with a goal of 15 in total. The foundation is recruiting patients who are not just low vision or legally blind, but profoundly blind, with no-to-little light sensitivity in one or more eyes.

“I tell patients this is like the Apollo mission—it’s potentially a big step forward but it’s entirely experimental,” says Birch. “They are pioneers.”

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.