Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Connectivity

Machine-Learning Algorithm Aims to Identify Terrorists Using the V Signs They Make

Terrorists often use masks, scarfs, and hoods to hide their identities. But a new approach aims to distinguish them using the shape of their fingers when they make the “V for victory” sign.

Every age has its iconic images. One of the more terrifying ones of the 21st century is the image of a man in desert or army fatigues making a “V for victory” sign with raised arm while standing over the decapitated body of a Western victim. In most of these images, the perpetrator’s face and head are covered with a scarf or hood to hide his identity.

That has forced military and law enforcement agencies to identify these individuals in other ways, such as with voice identification. This is not always easy or straightforward, so there is significant interest in finding new ways.

Today, Ahmad Hassanat at Mu'tah University in Jordan and a few pals say they have found just such a method. These guys say they have worked out how to distinguish people from the unique way they make V signs; finger size and the angle between the fingers is a useful biometric measure like a fingerprint.

The idea of using hand geometry as a biometric indicator is far from new. Many anatomists have recognized that hand shape varies widely between individuals and provides a way to identify them, if the details can be measured accurately.

However, the task of recognizing people using just a section of their hands is much harder. “Identifying a person using a small part of the hand is a challenging task, and has, to the best of our knowledge, never been investigated,” say Hassanat and co.

The team began by asking 50 men and women of varying ages to make a V sign with their right hand and photographing it several times against a black background with an eight-megapixel camera phone. This produced a database of 500 images.

An important question is how much information should be extracted from these images to aid in identification. Hassanat and co point out that many real-word images have low resolution, which limits the amount of information that can be gathered.

So they limited their analysis to determining the end points of the two fingers, the lowest point in the valley in between them, and two points in the palm of the hand.

This allowed them to analyze various triangle shapes between these points, their relative size and the angles they make, and so on.

They also used a second method to analyze the shape of the hand using a number of statistical measures. Combining these two methods creates a total of 16 different features that can be used in identification.

They then used two-thirds of the images to train a machine-learning algorithm to recognize different V signs and used the remaining images to test its efficacy.

The results make for interesting reading. Hassanat and co say that the combination of techniques allows them to distinguish the people in the data set with an accuracy of over 90 percent in some cases. “There is a great potential for this approach to be used for the purpose of identifying terrorists, if the victory sign were the only identifying evidence,” they say.

There are limitations to this work, of course. The first is that this is a relatively small data set, and Hassanat and co will want to show that their method works on a much larger scale. The second is that the likelihood of false positives and negatives has not been analyzed in detail. How likely is it that their algorithm misidentifies individuals?

That’s something the team is no doubt thinking about. And there are certainly improvements that can be made. Hassanat and co want to include other information in their analysis, such as finger width and length.

Of course, recognizing somebody by a V sign doesn’t give you a person’s identity. For that, the information would have to be combined with other data. Nevertheless, this is curious work that reveals how the pressures to identify nefarious individuals in the 21st century are leading to ever more inventive biometric techniques.

Ref: arxiv.org/abs/1602.08325 : Victory Sign Biometric for Terrorists Identification

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Connectivity

What it means to be constantly connected with each other and vast sources of information.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.