Intelligent Machines

This Uncrushable Robot Cockroach Just Wants to Rescue You

Inspired by roaches’ ability to squeeze into tiny spaces, this new critter is part of a rising trend of building robots that are soft and malleable.

If you were trapped beneath a pile of rubble, a large robotic cockroach might be the last thing you'd hope to see scrabbling toward you. However, two researchers at the University of California, Berkeley, seem to think that such a contraption could be the ideal way to reach survivors buried under debris.

Robert Full, a professor at Berkeley, and one of his graduate students, Kaushik Jayaram, took inspiration from the remarkably squishable and resilient cockroach to develop a robot version with an exoskeleton that allows it be compressed to less than half its height in order to wriggle through confined spaces.

In a paper published today in the Proceedings of the National Academy of Sciences, Full and Jayaram show how a cockroach is able to squeeze its body into tight spaces and still keep moving, thanks to an exoskeleton made of soft materials. They conducted a series of experiments that involved compressing real cockroaches and observing the forces placed on them.

The robot walking normally.

The researchers then built a device, which Full and Jayaram call a compressible robot with articulated mechanisms (CRAM), from several folding exoskeleton-like plates. They speculate that its malleability and strength could make it ideal for exploring collapsed buildings.

The robot's shell and flexible spine allow it to crawl when compressed to half its normal height.

It’s a cool experiment that also points to a significant and newish trend in robotics. Many researchers and a few companies are becoming interested in soft or malleable robot designs for the various physical advantages they can offer.

Firms including Soft Robotics and Empire Robotics already sell soft grippers designed to make it easier for robots to manipulate objects without requiring extreme precision. Exoskeletons might offer another way to make robots that can change shape while still retaining their strength.

So next time you try in vain to crush a cockroach beneath your shoe, perhaps take a moment to marvel at its incredible design, and consider its potential applications.

(Sources: PNAS, Scientific American)

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.

  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

You've read of free articles this month.