Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Business Impact

Gorgeous New 4-D Printing Process Makes More Than Just Eye Candy

A new technique for making “programmable” materials could lead to all sorts of medical and electronic devices.

If you are tired of the hype around 3-D printing, brace yourself, because it’s time to add another “D.” Yesterday, researchers unveiled a new process they can use to “4-D print” flat objects that change into complex shapes when they are immersed in water.

The new demonstration builds on the microscale printing process developed under the leadership of Jennifer Lewis, a materials scientist at Harvard. The images are captivating, but they aren’t just pretty pictures; they also hint at a fundamental new capability that could be applied in useful ways.

This is not the first time we’ve heard about 4-D printing, which refers to printing things that are “programmed” to change shapes later on. Three years ago Skylar Tibbits, a research scientist in MIT’s architecture department, introduced the term at the TED Conference. Tibbits’s process employed two materials, a rigid one and a softer one that expands when put in water.

Lewis and her colleagues have developed a simpler process based on a single new material, a composite made of a gel-like substance combined with tiny fibers of cellulose. The stiffness of these fibers, and the degree to which they swell in water, varies depending on how they are aligned. The researchers exploit that to “encode” the ability to change into a complex, prescribed shape. Lewis says it should be possible to use the new process, with a different hydrogel ink, to make objects that change shape in response to other stimuli, like light. The cellulose fibers could also be switched out for conductive materials to make electronic devices, she says.

This general approach might prove useful for tissue engineering. But let’s not get carried away—this in itself brings us no closer to “replacement organs.” A big challenge is developing 3-D scaffolds for growing new cells and tissues to help in making tissue repairs. Lewis says the group is already exploring this in the lab, by growing cells on flat structures and then triggering shape changes later on, for example by placing them in a wound site.

(Sources: Harvard, New Scientist)

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
More from Business Impact

How technology advances are changing the economy and providing new opportunities in many industries.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.