Connectivity

Your Future Self-Driving Car Will Be Way More Hackable

Carmakers are already struggling to make regular cars secure against hacks—self-driving technology will bring new problems, says a leading researcher.

In recent years researchers have demonstrated hair-raising hacks that make it possible to take over the brakes, engine, or other components of a person’s car remotely—forcing the auto industry to take security more seriously.

But one researcher who has pioneered the effort to prod car companies into addressing their security flaws says that the industry’s rush to develop driverless car technology will open up new security problems.

“We are a long way from securing the non-autonomous vehicles, let alone the autonomous ones,” said Stefan Savage, a computer science professor at the University of California, San Diego, at the Enigma security conference in San Francisco on Tuesday. The extra computers, sensors, and improved Internet connectivity required to make a car drive itself increase the possible weak points, he said. “The attack surface for these things is even worse,” said Savage.

Major auto companies are racing with newer upstarts such as Google and Tesla to roll out autonomous driving features and develop fully self-driving vehicles. Toyota has estimated that fully autonomous cars will be available within five years, and this month the U.S. government announced it wanted to smooth the way for testing and use of such vehicles on the nation’s roads.

That concerns Savage because of what he and colleagues learned in the course of showing it is possible to take control of conventional vehicles in various ways, for example by dialing into a car’s built-in cellular connection, or by giving a driver a music CD programmed with a “song of death” that makes the car connect to an attacker’s computer.

The way modern cars are designed, once an attacker can get inside the Internet network linking the roughly 30 different computers inside, he or she can take over just about any component, from the brakes to the radio, said Savage.

It’s not possible to isolate the “important” parts such as the brakes because everything must be connected to enable many functions people expect of cars, as well as to allow repairs and software upgrades, he said. “The notion that you can separate the mission-critical from the non-mission-critical turns out to be wrong,” he said.

For a vehicle to be able to understand its environment and drive itself even part of the time, more computers, sensors, and other components must be added to the tangle already inside our cars. That will expand the possible entry points for attackers and the things they can do—for example, self-driving cars rely on laser scanners and other sensors, which could be made to send false data. It will also magnify a problem that already exists—carmakers don’t know exactly what software is inside the vehicles they sell, said Savage.

That’s because cars are built using components sourced at the lowest possible cost from third-party suppliers. Those suppliers carefully guard the details of the software inside things like the brake-control system or central locking components.

“If you walk into a car company and say, ‘Have you looked at the source code for your vehicle?’ They will say no, because they do not own it. There is nobody in the world that owns all the code in a vehicle,” said Savage. “That’s a big problem.”

Carmakers have made significant improvements to their attitudes on security in recent years. For example, after Savage’s team showed how to remotely take over a Chevy Impala in 2010, GM fixed the flaws, built a new security team, and hired a new executive dedicated to car security. Auto companies are also working to make cars that can receive software updates remotely.

Some of the younger companies now working on autonomous cars, such as Tesla and Google, may also be able to sidestep some security problems baked into the way more established companies make cars. “Tesla has an advantage in that they started from scratch,” said Savage. “They got to design their architecture in the 21st century as opposed to the 20th century.”

However, even Google and Tesla will have to rely heavily on third-party suppliers to assemble their vehicles, meaning they may not be able to see all the code in their self-driving cars.

And Tadayoshi Kohno, a professor at the University of Washington, said that even when companies take security very seriously, the longevity of products such as cars leads to what he calls the “zombie problem.” A car can be on the roads for decades, but the company that made it and the suppliers of its components aren’t likely to keep providing software updates for its full lifetime. The same problem affects home appliances now being connected to the Internet. “What are we going to do with these zombies for the remaining 20 years that they are in service?” said Kohno. “I think it will be a very big problem.”

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Connectivity

What it means to be constantly connected with each other and vast sources of information.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.