Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A View from Alison Gopnik

Child’s Play

Computers should stop trying to act like grown-ups.

  • December 22, 2015

Everyone knows the Turing test. But almost no one remembers Alan Turing’s statement that to achieve true intelligence, you should design a machine that was like a child. He said the real secret to human intelligence is our ability to learn.

Alison Gopnik

Thirty years of developmental cognitive science have shown that children are the best learners on earth. But how do they learn so much so quickly? For the last 15 years developmental cognitive scientists and computer scientists have been trying to answer this question, and the answers shape new kinds of machine learning (see “Can This Man Make AI More Human?”).

This story is part of our January/February 2016 Issue
See the rest of the issue
Subscribe

Many of the recent advances in AI have come through techniques like deep learning, which can detect complicated statistical regularities in enormous data sets. Computers can suddenly do things that were impossible before, like labeling images on the Internet.

The trouble with this sort of purely statistical machine learning, though, is that it depends on data that’s already been selected by humans. Machines need gigantic human-generated data sets just to be able to look at a new picture and say “kitty-cat!”—something a baby can do after seeing just a few examples.

An alternative in machine learning and cognitive science—the “probabilistic models” framework—takes a different approach. These systems formulate and test abstract hypotheses. Bayesian inference procedures have been particularly important. For example, you can mathematically describe a particular causal hypothesis as a directed graph that systematically generates a particular data pattern, and then calculate just how likely that hypothesis is to be true, given the data you see. Machines have become great at testing hypotheses against the data in this way, with consequences for everything from medical diagnosis to meteorology. We’ve shown that young children use data to evaluate hypotheses in a similar way.

But there are two things even very young children do that are still far beyond the abilities of current computers. We are trying to understand these abilities both formally and empirically, and these investigations may allow us to design more powerful kinds of AI.

The really hard problem is deciding which hypotheses, out of all the infinite possibilities, are worth testing. Even preschoolers are remarkably good at coming up with brand new concepts and hypotheses in a creative and imaginative way. In fact, our research has shown that they can sometimes do this better than grown-ups.

A second area where children outshine computers is in their ability to go out and explore and experiment with the world around them—we call this “getting into everything.” Developmental cognitive scientists are just beginning to understand and formalize this kind of active learning.

The wildly creative imaginations and ceaseless exploration of young children may be the key to their impressive learning abilities. Studying those children can give us clues about how to design computers that can pass the more profound Turing test and be almost as smart as a three-year-old.

Alison Gopnik is a professor of psychology at the University of California, Berkeley.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.