Kenrick Vezina

A View from Kenrick Vezina

Can Genetic Engineering Save Endangered Rhinos?

Endangered rhinos are being killed for their horns. Some researchers think they can use bioengineering techniques to trip up the poachers.

  • October 27, 2015

The world’s rhinoceros species are in dire straits. Only one subspecies, the Southern white rhino in Africa, is in a relatively secure position. The rest are extinct in the wild, endangered, or threatened. All are subject to heavy pressure from poaching. Several projects, outlined by Laura Krantz for Smithsonian magazine, are trying to leverage modern technology to save this family of mammals.

It’s the great tragedy of rhino poaching that the only thing poachers really care about is the horn, which is still blessed (cursed?) with misplaced cultural cache as a medicinal substance in Asia. Animals are killed to take what is, in actuality, little more than a hardened cone of compacted hair. The cruelty and wastefulness is undeniable: the horn is chopped off and the animal, not necessarily dead yet, is discarded.

The dwindling supply of rhinos, in a bit of bitter economic irony, only drives up the already absurd prices horns fetch—as much as $30,000 per pound, according to Krantz.

Trade bans are a popular way of helping many endangered animals that suffer at the hands of poachers, including elephants, who are targeted for their tusks in much the same way as rhinos are for their horns. Clearly, though, regulation isn’t going to solve the supply-demand problem. For such a big payday, people will risk breaking the law.

What if there was a way to meet the demand for rhino horns without rhinos? Krantz’s article cites a Seattle-based bioengineering firm that’s making knock-off rhino horn in the lab.

Pembient uses yeast engineered with genes that produce rhino keratin, the major protein in horn (also in human hair and nails). After extracting the keratin from the yeast, the technicians mix it with rhino DNA, so the final product has a genetic signature similar to that of actual rhino horn. [Cofounder Matthew] Markus says he foresees the day when illicit buyers will use genetic tests to authenticate their loot, and he wants his counterfeits to pass muster. In time he hopes to grow—or 3-D print—entire horns and flood the black market with them, eliminating the incentive to kill the two-ton animals for the sake of their three- or four-pound horns.”

It’s an appealing idea—particularly the bit about preempting DNA checks—but it has a whiff of naivety about it. Synthetic horns might help meet the demand for ground-up rhino horn, but it seems dubious that collectors will be fooled. The team will have a hell of a time trying to replicate the vagaries of rhino life that give each horn its unique character, and I’m sure the sort of people interested in rhino horns for their value as a status symbol are a lot more interested in aesthetics and provenance than chemical composition. Is a horn still a “rhino horn” without the rhino?

Another company, British nonprofit Protect, is outfitting rhinos with personal surveillance systems, including heart rate monitors and horn-mounted video cameras. “Whenever an animal’s heart rate jumps, a radio collar sends an alarm, along with GPS coordinates, to park officials, who dispatch rangers to the site by truck or helicopter,” Krantz writes. The monitoring systems are connected to big, magenta radio collars in the hopes that poachers will soon learn that killing collared animals will bring law enforcement down on their heads.

By far my favorite approach—and the one with the most schadenfreude—is carried out by the Rhino Rescue Project in South Africa. They capture animals alive and inject the horn with a combination of drug and dye that render it useless as an ornament. What’s more, if the horn is ground up and consumed it will now cause “nausea, vomiting, and convulsions.” It’s not just vindictive, mind you. If people start getting sick from consuming rhino horn, it’s bound to erode its “medicinal” reputation.

It’s not made explicit in the article, but extensive genetic analysis and monitoring is de rigueur for both captive and wild populations of rhinos and other animals today. Genetic techniques that would have been inaccessible even a few decades ago help scientists to preserve as much of a species’ dwindling genetic diversity as possible. The potential exists to take genetic intervention a step further, however.

Whether or not to use genetic engineering to give endangered species a leg up is a matter of great contention, even as some futurists (notably Harvard’s celebrity geneticist George Church) push toward “reviving” extinct species. I wouldn’t be surprised if someone was hatching plans to engineer a hornless rhino as we speak (see “On the Horns of the GMO Dilemma”).

Whether or not a rhino without a horn is still a rhino is a philosophical question for another day.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insder? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.

  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.