We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Business Report

Technology Jobs: Radiology

Digitization didn’t gut the field, and recent innovations are expanding radiology beyond interpreting images.

Radiology can date its birth to December 22, 1895, when the German physicist Wilhelm Röntgen shot electromagnetic radiation through his wife’s left hand to produce the world’s first human radiograph, a black-and-white image of a skeletal hand wearing a wedding ring.

Ranier Birkenbach, executive vice president at Brainlab, demonstrates the company’s Curve image-guided surgery system on a model brain.

In recent years, the transition from analog to digital imaging and advances in computer-based medical tools have allowed radiologists to access imaging results on a mobile phone or tablet and analyze them immediately. Now, new tools—designed to help radiologists deal with a rapidly growing amount of data and make faster, more accurate diagnoses—are changing the job in other unexpected ways.

This story is part of our November/December 2015 Issue
See the rest of the issue

Asked what a radiologist does, most people are likely to think of a physician sitting alone in a dark lab reading x-rays, says Moritz Wildgruber, a radiologist and researcher at the Klinikum Rechts der Isar hospital in Munich, Germany. At one time digital imaging technology seemed like a potential threat to the profession. Some feared that with “teleradiology,” radiographs could be efficiently sent off-site to be read assembly-line-style.

As with many technological shifts, the reality has been more tempered. In part because of strict regulations and liability issues limiting where a scan can be read and by whom, radiology has not been outsourced wholesale. On-site hospital radiology groups remain important, though teleradiology is used in remote areas and in overnight urgent care.

Technologies beyond digitization, however, have become increasingly important to radiology. Among them are computational medicine and data science.

New applications can reconstruct a tumor in 3-D and precisely measure its volume as it changes over time. “As a radiologist you cannot just stick to the images anymore; you have to be able to use this software,” says Wildgruber. “Otherwise you can’t deal with the workload.”

Brainlab’s mobile CT device (here on display in the company’s demonstration hall with a mock patient) can be used in an operating room to take images of a patient at various stages of a procedure.

The increasing complexity of the work and the sheer volume of medical images, which now include video recordings and digital models, have created new challenges, and new opportunities, for companies like IBM and Germany’s Brainlab. “A typical emergency room radiologist will do 30 to 40 CT studies, with 2,000 to 3,000 images per study,” says Tanveer Syeda-Mahmood, chief scientist for a project at IBM that is developing automated radiology and cardiology tools. “You’re easily looking at 100,000 images per day.” With all this data—images for one patient might account for 250 gigabytes, says Syeda-Mahmood—a radiologist is at risk of missing the small percentage of images crucial to identifying pathologies.

IBM, which developed the Watson technology that triumphed on Jeopardy!, is testing whether similar computer–based reasoning, machine learning, and analytical problem solving modeled on human cognition could ameliorate some of these issues. According to the company, early work has demonstrated that the system can autonomously learn what a pathology looks like—say, an abnormal narrowing in a coronary artery—and automatically alert the radiologist to the most important images for a given patient.

The system is still learning, but Syeda-Mahmood says that in testing it has achieved over 80 percent accuracy with certain medical conditions—in the range of a good radiologist. Its education could be sped up by having it study the 30 billion images from hospitals, pharmaceutical companies, and clinical research organizations that the company recently acquired in its $1 billion purchase of Merge Healthcare.

Though Brainlab, whose major markets include North America, is working from a different angle, it too could greatly alter radiology by better utilizing imaging—both diagnostic and interventional—in the operating room.

A neurosurgeon working in an operating room outfitted with Brainlab’s image-guided surgery and intraoperative CT systems—like those at the Klinikum Grosshadern, in Munich—is able to visualize tools, anatomy, and radiologic images of diseases overlaid, in real time through a neurosurgeon’s scope, on the patient’s brain. At the same time, the radiologist can watch live feeds of the surgery in person or remotely, review images and video taken at various stages of the operation, and coördinate treatment.

These technological advances enable radiologists and other physicians to perform more kinds of treatments, including minimally invasive techniques like recanalization of blocked blood vessels and targeted tumor therapies carried out under image guidance.

This blurring of medical portfolios has begun to create conflicts between once-distinct medical specialties. “If you want to open an occluded artery with a stent,” says Wildgruber, “the radiologist can do it, the vascular surgeon can do it, the cardiologist can do it.” So whom do you go to when you arrive at the hospital for such a treatment? Today the answer, surprisingly, may come down to which department is available when you walk in.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
Next in this Business Report
The Future of Work: 2015

Technology is changing the nature of the work we do. This report highlights the jobs that will benefit from this shift, and examines the bigger challenges it brings.

Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.