Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

View from the Marketplace

Views from the Marketplace are paid for by advertisers and select partners of MIT Technology Review.

Spark at the Center of a Technology Revolution

Most of us in the tech business are familiar with Moore’s Law. For those of us who are not, the law states that the number of transistors or processing power per square inch on integrated circuits doubles each year since their invention. This trend led first to the emergence of personal computers and smartphones, and now to the Internet of Things. 1 in 5 people globally now have a personal computer, and in the U.S., 4 in 5 people do. In the case of mobile, 1 in 2 people globally have a smartphone, and in the U.S., 3 in 4. Looking through even the small window we have for the potential of the IOT, it’s clear that the digital, connected world we all live in is positioned to reinvent business, science, and society.

All of our connected devices are fueling a growth in data that is completely new to everyone. Starting 3 years ago, we generated more data than we created in the 199,997 years of human history leading up to that point. What this starburst of data means is that how we think about data and technology needs to change at the most fundamental level. It’s not just a question of scale—the types of data and the potential for the way they impact human life and the globe are different at the core. Traditional approaches are either not going to function with the new, massive amounts of data, or they are not going to produce results that are relevant in a world where real-time feedback from devices wired into everything from human heartbeats to interstellar data is flowing constantly and at an increasing rate.

For example, we can no longer try to transform data before loading it into an analytics environment. We cannot move data around to analyze it, nor can we query data with preconceived questions as there are too many variables to think about.


Read more content provided by IBM:

Fortunately, at the same time as this data explosion is happening all around us, the barriers to working with data and data technology are lowering at an amazingly fast rate.

Everyone now has access to the information, the technology, and the tools needed to extract as yet untapped value from this explosion of data. To prove this out, I’ve plotted trend data I aggregated from sources on the web.

The cost of compute, storage, and broadband—required to work with data and perform analytics—is economically zero. Access to technology alone is not in itself valuable.

To derive insight from all of this data requires the invention of new disciplines. The aptly named field of Data Science has emerged, and the new roles of the Data Engineer and the Data Scientist are in a state of evolution, with boundaries and skills fluctuating and growing as new data technologies like machine learning and distributed computing emerge. Each role has its own set of competencies that in many ways is turning the current state of analytics best practices on its head.

First, get used to the idea of fuzzy math (probability) and even fuzzier insights (accuracy: they’re becoming the norm, not the exception. The next upheaval: how we take these insights and turn them into action. This is where Apache Spark comes in. Spark makes use of the new trends in data science and creates what I consider the Analytics Operating System to program data into insight. The end goal: applications powered by deep intelligence.

Driving demand for intelligent applications is the Internet of Things. The IOT is the next step in the reach of analytics: intelligence built into everything. Driving this mega trend is the increase in the amount of computation per kwh that is going up as we improve energy efficiencies—explained elegantly in this paper by Jonathan G. Koomey: electrical efficiency of computation has doubled roughly every year and a half for more than 6 decades.

Over time, we will look back and see this year, 2015, as the year we made a fundamental shift in our thinking from simply discovering insights to applying them on a massive scale and in ways that produce insights we can’t at this point imagine. We’ll no longer consider insights derived from data as information visualized on a dashboard. Insights derived from data are the true source of the next industrial revolution: the insight economy. I for one am excited for all of us, as we’re increasingly connected to devices and to each other around the globe, to stop slashing our way through a randomly-generated jungle of data, and instead to have insight delivered to us in the moment where we need it the most.

You can find the details of my data sources and simple visualization analysis below.

## datasets
http://www.mkomo.com/cost-per-gigabyte
http://drpeering.net/white-papers/Internet-Transit-Pricing-Historical-An...
http://www.jcmit.com/cpu-performance.htm
https://www.dropbox.com/s/f7ag8zkkerqcnak/tech_cost_trends.csv?dl=0

## technology trends analysis

techdata = read.csv(“data/tech_cost_trends.csv”)
## visualize in trendline
plot(techdata$Year,techdata$Cost.of.Performance, type=”n”, xlab=”Year”,ylab=”Cost”, log=”y”)
lines(techdata$Year,techdata$Cost.of.Performance, col=”blue”, lwd=2.5)
lines(techdata$Year,techdata$Cost.of.Storage, col=”red”,lwd=2.5)
lines(techdata$Year,techdata$Cost.of.Transfer, col=”green”,lwd=2.5)

leg.txt <- c(“Performance”, “Storage”, “Transfer”)
legend(1990,1e+11, legend=leg.txt, lty=c(1,1), lwd=c(2.5,2.5),col=c(“blue”,”red”,”green”))

## visualize in ggplot
g <- ggplot(techdata, aes(techdata$Year))
g <- g+ geom_line(aes(y=techdata$Cost.of.Performance), colour=”blue”)
g <- g+ geom_line(aes(y=techdata$Cost.of.Storage), colour=”red”)
g <- g+ geom_line(aes(y=techdata$Cost.of.Transfer), colour=”green”)
g

For information on IBM’s new Spark Technology Center,  click here 

Join the discussion on emerging technology at EmTech MIT and discover how experts plan to solve some of the greatest challenges of our time.

Learn more and register
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.