Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

A View from Jennifer A. Doudna

Genome Gambits

New genetic tools can do tremendous good—if we use them carefully.

  • April 21, 2015

My dad loved to hike in the rain forests near our home on the Big Island of Hawaii, often to hunt for mushrooms with Don Hemmes, his colleague at the University of Hawaii. The goal of these trips was not to harvest mushrooms but to photograph them for a research project that Hemmes was leading. When I accompanied them, I was always struck by the incredible diversity of the mushrooms we found. Having learned a little about genetics in school, I wondered what kinds of DNA changes were responsible for these organisms’ range of colors, shapes, and sizes. And how could we figure out such molecular signatures?

Jennifer A. Doudna
Jennifer A. Doudna

Fast-forward 30-odd years, and it’s become routine to sequence the entire genomes of organisms, and to interpret that information to reveal the underlying causes of observable traits. A simple and effective technology for making precise changes to those genomic sequences, developed by harnessing a system that bacteria use to fight viral infections, has exploded into widespread use. The technology, called CRISPR, relies on a programmable DNA-cutting enzyme called Cas9, together with its guide RNA, to let scientists alter the genetic information within cells, tissues, and whole organisms. Scientists have used it to generate new strains of wheat, to cure a genetic disease in the livers of adult mice, and to produce altered fungal cells capable of efficient biofuel synthesis. The CRISPR-Cas9 technology has opened up a world of research opportunities that were inconceivable just three years ago. The technology will benefit humanity in many ways.

This story is part of our May/June 2015 Issue
See the rest of the issue
Subscribe

There’s also a growing appreciation of the risks involved. CRISPR-Cas9 technology can, as an example, be used to alter the DNA in germ cells or embryos, resulting in permanent changes to the genetic makeup of every differentiated cell in a resulting organism—and to that organism’s progeny (see “Engineering the Perfect Baby”). The system is so efficient that genetic changes it introduces could become self-propagating. Such applications could be employed to cure genetic disease in humans or to limit the fitness of disease-carrying organisms—but the intricacies of genetic interaction mean those uses could also have unintended consequences, perhaps triggering other diseases.

Research is needed to understand the utility and risks of CRISPR-Cas9 in cells including human germ cells, as well as the risks inherent in any human clinical applications that might be possible in the future. We should research the ramifications of using genome engineering to control organisms, such as mosquitoes, that can spread malaria or dengue fever. While we should embrace this technology, scientists also must come together to guide peers and regulators as to its responsible use.

Jennifer A. Doudna is a professor of biology and chemistry at the University of California, Berkeley. She was one of the inventors of the CRISPR technology.

Be there when AI pioneers take center stage at EmTech Digital 2019.

Register now
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to MIT Technology Review.
  • Print + All Access Digital {! insider.prices.print_digital !}* Best Value

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivered daily

  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivered daily

  • Print Subscription {! insider.prices.print_only !}*

    {! insider.display.menuOptionsLabel !}

    Six print issues per year plus The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Print magazine (6 bi-monthly issues)

    The Download: newsletter delivered daily

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.