Connectivity

Researchers Use Electrodes for “Human Cruise Control”

A study put people on autopilot by electrically stimulating their thigh muscles.

Mobile map apps can distract us even as they get us where we want to go.

Sure, you can get directions by looking at a map on your phone or listening to turn-by-turn navigation. But what if you could just walk from point A to point B in a new place without having to look at a device or even think about whether you’re on the right course?

A group of researchers from three German universities is working on just that. In a study, they electrically stimulated a leg muscle to nudge subjects to turn left or right along twisty routes in a park. The work, which researchers refer to as “human cruise control,” will be presented next week in a paper at the CHI 2015 human-computer interaction conference in Seoul, South Korea.

Max Pfeiffer, a coauthor of the paper and graduate student at the University of Hannover, says the idea is to eliminate the distraction of having to constantly pay attention to your phone while finding your way. If the researchers can figure out how to make the technology reliable enough and get people comfortable using it, it could also be helpful for exercise workouts or guiding emergency responders in situations where they can’t see well.

The researchers placed electrodes on participants’ sartorius muscles, which run diagonally across the thighs. These connected to a commercially available electrical muscle stimulation device and a Bluetooth-equipped control board that were worn at the waist.

First, researchers blindfolded participants and used the system to navigate them indoors to learn about controlling walking with electrical muscle stimulation. A couple of participants didn’t feel anything when their muscles were actuated by researchers, but researchers were able to control 11 participants well enough to steer them.

After that, the experiment went outside. The researchers made four participants turn along park trails and across lawns by using a smartphone app to send electrical current to the subjects’ right or left legs. A video from the researchers shows what this kind of electric zap looks like: a subtle twitching that turns the leg outward, only strong enough to affect you if you’re walking (if you’re standing still, it wouldn’t be enough of a jolt to turn your leg, researchers say). The feeling, Pfeiffer says, is like a tingle that lessens over time.

Now the researchers are working on improving the precision of their system and automating it so subjects can follow a route without a human directing them.

One problem with the idea is that people would need a great reason to wear electrodes, which for the study were bulky and noticeable, especially when combined with the electrical muscle stimulation control unit. Simpler technologies for less disruptive navigation are already emerging. The Apple Watch, for instance, gives you the sensation of a tap on the wrist when you need to make a left or right turn.

“I don’t see myself putting these electrodes on in the morning,” says Juan David Hincapié-Ramos, a postdoctoral researcher at the University of Manitoba’s human-computer interaction lab. He worked on a somewhat similar project in 2013 that used a depth-sensing camera to give smartphone users on-screen alerts about upcoming obstacles (see “Safe Texting While Walking? Soon, There May be an App for That”).

In the paper, researchers suggest one solution that may make wearing electrodes less of a chore: add them to underwear.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Connectivity

What it means to be constantly connected with each other and vast sources of information.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.