Skip to Content

Why Zapping the Brain Helps Parkinson’s Patients

Deep brain stimulation could lead to a more effective, self-tuning device for Parkinson’s.

Sending pulses of electricity through the brain via implanted electrodes—a procedure known as deep brain stimulation—can relieve the symptoms of Parkinson’s and other movement disorders.

brain scan
Using electrodes (the white dots in this MRI image) on the brain’s surface, researchers found that deep brain stimulation dampens the synchronization of neurons in Parkinson’s patients.

The catch is that no one knows exactly why zapping the brain with electricity is so beneficial. A study published today in Nature Neuroscience offers a potential explanation for the benefits seen in Parkinson’s disease: it keeps neurons from getting too “in sync.”

If the finding bears out in further studies, it may be useful for making more sophisticated and effective devices that monitor brain activity and adjust stimulation automatically.

Healthy neurons don’t just fire randomly; there’s often a low-frequency rhythm that determines the timing of their activity, like a conductor setting the beat for a band. A growing number of studies suggest that synchronization has a role in many brain functions, from memory to perception to movement.

Researchers at the University of California, San Francisco, led by neurosurgeon Philip Starr, had previously found that this synchronization is abnormally high in the motor cortex of people with Parkinson’s disease compared to patients with dystonia (a different kind of movement disorder) or with epilepsy.

The same group has now found that deep brain stimulation lowers this excessive synchronization. Coralie de Hemptinne, one of the study’s authors, says that brain cells need a balance between coӧrdination and independence; in Parkinson’s disease, motor cortex cells may have trouble disassociating their activity from the low-frequency rhythm in order to initiate movement. That could explain why people with the disease become stiff or frozen.

The study looked at patients undergoing deep brain surgery for their Parkinson’s disease, with electrodes implanted into brain structures that control movement. The study was limited to the time of surgery, but the group is now taking recordings from a few Parkinson’s patients who have permanent electrodes on the brain’s surface along with a deep brain stimulation implant, to see whether this connection persists.

The ultimate goal, de Hemptinne says, is to find a measurable signal that could be used to improve the therapy and automatically tune a deep brain stimulator. “Right now deep brain stimulation is working pretty well in movement disorders, but it’s still not optimal,” she says. Current stimulators must be adjusted for each patient through trial and error, and they stimulate the brain continuously.

A better device would adjust itself according to activity in the brain and stimulate only when needed—but it must know what to look for. Medtronic, for instance, is testing a deep brain stimulator that both records from and stimulates the brain, but researchers are still trying to figure out what to look for in different diseases (see “New Implantable Device Can Manipulate and Record Brain Activity”).

Exactly how deep brain stimulation works is also not settled yet.

“There are many biological changes that have been associated with deep brain stimulation,” and it’s not clear which are actually responsible for the therapeutic effect, says Michael Okun, a neurologist at the University of Florida. While synchronization of brain rhythms could be one factor, he says, “we should be very cautious about overinterpretation.”

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.