We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Astrophysicists Prove That Cities On Earth Grow in the Same Way As Galaxies in Space

The way galaxies evolve from variations in matter density in the early universe is mathematically equivalent to the way cities grow from changes in population density on Earth, say cosmologists.

  • January 16, 2015

Urban sociologists have long known that a set of remarkable laws govern the large-scale interaction between individuals such as the probability that one person will befriend another and the size of the cities they live in.

The latter is an example of the Zipf’s law. If cities are listed according to size, then the rank of a city is inversely proportional to the number of people who live in it. For example, if the biggest city in the US has a population of 8 million people, the second-biggest city will have a population of 8 million divided by 2, the third biggest will have a population of 8 million divided by 3 and so on.

This simple relationship is known as a scaling law and turns out to fit the observed distribution of city sizes extremely well.

Another interesting example is the probability that one person will be friends with another. This turns out to be inversely proportional to the number of people who live closer to the first person than the second.

What’s curious about these laws is that although they are widely accepted, nobody knows why they are true. There is no deeper theoretical model from which these laws emerge. Instead, they come simply from the measured properties of cities and friendships.

Today, all that changes thanks to the work of Henry Lin and Abraham Loeb at the Harvard-Smithsonian Centre for Astrophysics in Cambridge. These guys have discovered a single unifying principle that explains the origin of these laws.

And here’s the thing: their approach is mathematically equivalent to the way that cosmologists describe the growth of galaxies in space. In other words, cities form out of variations in population density in exactly the same way that galaxies formed from variations in matter density in the early universe.

These guys begin by creating a mathematical model of the way human population density varies across a flat Euclidean plane. (They say they can ignore the effects of the Earth’s curvature in their model because any variations in population density will be small compared to the radius of the Earth.)

That is exactly how cosmologists think about the way galaxies evolved. They first consider the matter density of the early universe.  Next, they look at the mathematical structure of any variations in this density. And finally they use this mathematics to examine how this density can change over time as more matter is added or taken away from specific regions.

Because of the many decades of work on cosmology, these mathematical tools are already well understood and easily applied to the similar problem of the population density on Earth. All that is needed is some data to calibrate the mathematical model.

For example, the time it takes for any perturbations in the population density to smooth themselves out is of the order of five years. That’s the timescale over which about 35 percent of people in the US change residences.

Having created a model of the way that population density varies, Lin and Loeb test the model against publicly available data. “The results are in good agreement with the theoretical prediction across a broad range of spatial scales, from a few km to ∼ 10^3 km,” they say.

They go on to calculate the number of cities above a certain population threshold and show using the model that this quantity has a logarithmic slope equal to -1. “This statement is equivalent to Zipf’s law: the rank of a city is inversely proportional to its size,” point out Lin and Loeb.

They also calculate the average number of friends a person might have within a given region. And once again their model comes up with the inverse-rank friendship law that urban sociologists are already familiar with.

Interestingly, they say their model leads to the same laws for a wide range of initial conditions. That’s important because the models do not require any fine-tuning to match the observed data, a problem that cosmologists are frustratingly well versed in.

The work of Lin and Loeb is not just a mathematical curiosity. It has important implications for other factors that are related to population density, such as the spread of disease. Indeed, they say their model points to a new way of determining how disease spreads based on a parameter they call the bias factor, which ought to be observable in historical data on epidemics.

“Just as the development of models for non-linear structure formation in the universe led to a wealth of theoretical and observational work in cosmology, future work here could include the calculation of new observables such as the bias factor for the spread of epidemics,” they conclude.  

That’s a fascinating piece of science that leads to a unified theory of urban evolution for the first time.

Ref: http://arxiv.org/abs/1501.00738 : A Unifying Theory for Scaling Laws of Human Populations

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.