We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Intelligent Machines

A Brain-Inspired Chip Takes to the Sky

An experiment involving a chip on a small drone shows how hardware modeled on the brain could provide useful intelligence.

Power-efficient chips could be very capable at doing jobs that stymie today’s computers.

There isn’t much space between your ears, but what’s in there can do many things that a computer of the same size never could. Your brain is also vastly more energy efficient at interpreting the world visually or understanding speech than any computer system.

HRL neuromorphic chip
The chip mounted in the center of this small aircraft has 576 silicon “neurons.” The connections between these neurons are rewired in response to data from the drone’s sensors.

That’s why academic and corporate labs have been experimenting with “neuromorphic” chips modeled on features seen in brains. These chips have networks of “neurons” that communicate in spikes of electricity (see “Thinking in Silicon”). They can be significantly more energy-efficient than conventional chips, and some can even automatically reprogram themselves to learn new skills.

Now a neuromorphic chip has been untethered from the lab bench, and tested in a tiny drone aircraft that weighs less than 100 grams.

In the experiment, the prototype chip, with 576 silicon neurons, took in data from the aircraft’s optical, ultrasound, and infrared sensors as it flew between three different rooms.

The first time the drone was flown into each room, the unique pattern of incoming sensor data from the walls, furniture, and other objects caused a pattern of electrical activity in the neurons that the chip had never experienced before. That triggered it to report that it was in a new space, and also caused the ways its neurons connected to one another to change, in a crude mimic of learning in a real brain. Those changes meant that next time the craft entered the same room, it recognized it and signaled as such.

The chip involved is far from ready for practical deployment, but the test offers empirical support for the ideas that have motivated research into neuromorphic chips, says Narayan Srinivasa, who leads HRL’s Center for Neural and Emergent Systems. “This shows it is possible to do learning literally on the fly, while under very strict size, weight, and power constraints,” he says.

The drone, custom built for the test by drone-maker company Aerovironment, based in Monrovia, California, is six inches square, 1.5 inches high, and weighs only 93 grams, including the battery. HRL’s chip made up just 18 grams of the craft’s weight, and used only 50 milliwatts of power. That wouldn’t be nearly enough for a conventional computer to run software that could learn to recognize rooms, says Srinivasa.

The flight test was a challenge set by the Pentagon research agency DARPA as part of a project under which it has funded HRL, IBM, and others to work on neuromorphic chips. One motivation is the hope that neuromorphic chips might make it possible for military drones to make sense of video and sensor data for themselves, instead of always having to beam it down to earth for analysis by computers or humans.

Prototypes made under DARPA’s program—like HRL’s—have delivered promising results, but much work remains before such technology can perform useful work, says Vishal Saxena, an assistant professor working on neuromorphic chips at Boise State University. “The biggest challenge is identifying what the applications will be and developing robust algorithms,” he says.

Researchers also face a chicken-and-egg scenario, with chips being developed without much idea of what algorithms they will run and algorithms being written without a firm idea of what chip designs will become established. At the same time, neuroscientists are still discovering new things about how networks of real brain cells work on information. “There’s a lot of work to be done collectively between circuit and algorithm experts and the neuroscience community,” says Saxena.

Still, HRL’s owners, GM and Boeing, are already considering how they might commercialize the technology, says Srinivasa. One option could be to use neuromorphic chips to build a degree of intelligence into the sensors increasingly found in cars, planes, and other systems.

Learn from the humans leading the way in intelligent machines at EmTech Next. Register Today!
June 11-12, 2019
Cambridge, MA

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.