“Smorphs”: Less of a Drag

Materials with morphable surface texture could be used to improve fuel efficiency.

There is a reason why golf balls have that dimpled surface, as do the latest soccer balls and even some athletic wear. Testing over the years has proved that such irregular surfaces, on round or blunt objects, dramatically cut the drag caused by air resistance and thus can increase speed.

soft polymer spheres
This sphere, made of a soft polymer with a thin coating of a stiffer polymer, becomes dimpled when air is pumped out of its hollow center, causing it to shrink.

Now MIT researchers have found a way to harness that effect to reduce drag on a variety of surfaces.

Aerodynamics studies have shown that while a ball with a dimpled surface has half the drag of a smooth one at lower speeds, it has more drag than a smooth surface at higher speeds. So the ideal would be a surface whose roughness can be altered, literally, on the fly—and that’s what the team led by Pedro Reis, a professor of mechanical engineering and civil and environmental engineering, has developed.

To get surfaces that could change in real time, the researchers imitated the multilayer configuration that causes smooth plums to dry into wrinkly prunes. Reis and his team made a hollow ball of soft material enveloped by a stiff skin, both layers made of rubberlike materials. Then they extracted air from the hollow interior to make the ball shrink, causing its surface to wrinkle.

When the researchers saw the wrinkled outcomes of initial tests with their multilayer spheres, “we realized that these samples look just like golf balls,” Reis says. “We systematically tested them in a wind tunnel, and we saw a reduction in drag very similar to that of golf balls.”

Because the surface texture can be controlled by adjusting the balls’ interior pressure, the degree of drag reduction can be controlled at will. “We can generate that surface topography or erase it,” Reis says. “That reversibility is why this is pretty interesting; you can switch the drag-reducing effect on and off, and tune it.”

The team refers to its invention as “smart morphable surfaces”—or “smorphs.” The pun is intentional, Reis says: the paper’s lead author—former postdoc Denis Terwagne, a fan of Belgian comics—pointed out that one characteristic of the Smurfs cartoon characters is that no matter how old they get, they never develop wrinkles.

One possible application could be in automobiles: adjusting the texture of exterior panels to minimize drag at different speeds could increase fuel efficiency, Reis says.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.