Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Gesundheit

Coughs and sneezes create gas clouds, spreading germs farther than you think.

The next time you feel a sneeze coming on, raise your elbow to cover up that multiphase turbulent buoyant cloud you’re about to expel.

sneeze outline
Although the clouds generated by coughs and sneezes are invisible, they extend the range of individual small droplets.

That’s right: a study by MIT researchers shows that coughs and sneezes form gas clouds that keep their potentially infectious droplets aloft over much greater distances than anyone previously realized.

MIT News cover
This story is part of the July/August 2014 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

“When you cough or sneeze, you see the droplets, or feel them if someone sneezes on you,” says John Bush, a professor of applied mathematics and coauthor of a new paper on the subject. “But you don’t see the cloud, the invisible gas phase. The influence of this gas cloud is to extend the range of the individual droplets, particularly the small ones.”

The study finds that droplets 100 micrometers—or millionths of a meter—in diameter travel five times farther than previously estimated, while droplets 10 micrometers in diameter travel 200 times farther. Droplets less than 50 micrometers can frequently remain airborne long enough to reach ceiling ventilation units.

With this in mind, architects and engineers may want to reëxamine the design of workplaces and hospitals, or air circulation on airplanes, to reduce the chances that airborne pathogens will be transmitted.

“You can have ventilation contamination in a much more direct way than we would have expected originally,” says Lydia Bourouiba, an assistant professor in the Department of Civil and Environmental Engineering and another coauthor of the study, published in the Journal of Fluid Mechanics.

The researchers used high-speed imaging of coughs and sneezes, as well as laboratory simulations and mathematical modeling, to determine how the droplets behave. Others had previously assumed that larger mucus droplets fly farther than smaller ones, because they have more momentum. It turns out to be more complicated, however, because of the way a cough or sneeze forms what they term a “multiphase turbulent buoyant cloud,” mixing with surrounding air before its payload of liquid droplets falls out, evaporates into solid residues, or both.

“If you ignored the presence of the gas cloud, your first guess would be that larger drops go farther than the smaller ones and travel at most a couple of meters,” Bush says. “But by elucidating the dynamics of the gas cloud, we have shown that there’s a circulation within the cloud—the smaller drops can be swept around and resuspended by the eddies within a cloud, and so settle more slowly.”

Given local air conditions, researchers can now better estimate the reach of a given expelled pathogen. “Where does the pathogen actually go?” Bush says. “The answer has changed dramatically as a result of our revised physical picture.”

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Basic.
  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.