Skip to Content

SpaceX Set to Launch the World’s First Reusable Booster

SpaceX’s reusable booster rocket, the first of its kind, could pave the way for radically cheaper access to space.

Later this month, if all goes well, Space Exploration Technologies, or SpaceX, will achieve a spaceflight first.

the Grasshopper, a test vehicle used by SpaceX
Up and away: The Grasshopper, a test vehicle used by SpaceX, takes off from the company’s McGregor, Texas, launch site in June 2013.

After delivering cargo to the International Space Station, the first stage of the Falcon 9 rocket used for the flight will fire its engines for the second time. The burn will allow the rocket to reenter the atmosphere in controlled flight, without breaking up and disintegrating on the way down as most booster rockets do.

The launch was originally planned for March 16, but the company has delayed the launch until at least March 30 to allow for further preparation.

The machine will settle over the Atlantic Ocean off the coast of its Cape Canaveral launchpad, engines roaring, and four landing legs will unfold from the rocket’s sides. Hovering over ocean, the rocket will kick up a salt spray along with the flames and smoke. Finally, the engines will cut off and the rocket will drop the last few feet into the ocean for recovery by a waiting barge.

Future flights of the so-called F9R rocket will have it touching down on land. For now, a water landing ensures maximum safety in case the rocket goes off course.

The test of SpaceX’s renewable booster rocket technology will be the first of its kind and could pave the way to radically cheaper access to space. “Reusability has been the Holy Grail of the launch industry for decades,” says Jeff Foust, an analyst at Futron, a consultancy based in Bethesda, Maryland. That’s because the so-called expendable rockets that are the industry standard add enormously to launch costs—the equivalent of building a new aircraft for every transatlantic flight.

SpaceX began flying low-altitude tests of a Falcon 9 first stage with a single engine, a rocket known as Grasshopper, at its McGregor, Texas, proving grounds in 2012. The flights got progressively higher, until a final test in October, when the rocket reached an altitude of 744 meters. Then, following a flight to place a communications satellite in geosynchronous orbit from Vandenberg Air Force Base in California in November, a Falcon 9 first stage successfully restarted three of its nine engines to make a controlled supersonic reentry from space.

The rocket survived reentry, but subsequently spun out of control and broke up on impact with the Pacific Ocean. SpaceX CEO Elon Musk said in a call with reporters after the flight that landing legs, which that rocket lacked, would most likely have stabilized the rocket enough to make a controlled landing on the water. The March 16 flight will be the first orbital test with landing legs.

After recovering the rocket from the water on Sunday, SpaceX engineers and technicians will study it to determine what it would take to refurbish such a rocket for reuse. SpaceX also has plans to recover and reuse the second stage rocket, but for now, it will recover only the first stage and its nine Merlin engines, which make up the bulk of the cost of the rocket.

Even without reusable rockets, SpaceX has already shaken up the $190-billion-a-year satellite launch market with radically lower launch costs than its competitors. The company advertises $55.6 million per Falcon 9 launch. Its competitors are less forthcoming about how much they charge, but French rocket company Arianespace has indicated that it may ask for an increase in government subsidies to remain competitive with SpaceX.

Closer to home, SpaceX is vying for so-called Evolved Expendable Launch Vehicle, or EELV, contracts to launch satellites for the U.S. Air Force. Its only competitor for the contracts, United Launch Alliance, charges $380 million per launch.

Musk testified before a Senate Appropriations Subcommittee on Defense meeting on March 5 that his company can cut that cost down to $90 million per launch. He said the higher cost for a government mission versus a commercial one was due to a lack of government-provided launch insurance. “So, in order to improve the probability of success, there is quite a substantial mission assurance overhead applied,” Musk said in the hearing. Still, SpaceX’s proposed charge for the Air Force missions is a mere 23 percent of ULA’s.

SpaceX is counting on lower launch costs to increase demand for launch services. But Foust cautions that this strategy comes with risk. “It’s worth noting,” he says, “that many current customers of launch services, including operators of commercial satellites, aren’t particularly price sensitive, so thus aren’t counting on reusability to lower costs.”

That means those additional launches, and thus revenue, may have to come from markets that don’t exist yet. “A reusable system with much lower launch costs might actually result in lower revenue for that company unless they can significantly increase demand,” says Foust. “That additional demand would likely have to come from new markets, with commercial human spaceflight perhaps the biggest and best-known example.”

Indeed, SpaceX was founded with human spaceflight as its ultimate mission. It is now one of three companies working with NASA funds to build ships capable of sending astronauts to the International Space Station. Musk plans to take SpaceX even further—all the way to Mars with settlers. And colonizing Mars will require lots of low-cost flights.

Michael Belfiore (michaelbelfiore.com) is the author of Rocketeers: How a Visionary Band of Business Leaders, Engineers, and Pilots Is Boldly Privatizing Space.

Updated on March 14, at 3 p.m. EST, to include mention of the delay.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

This baby with a head camera helped teach an AI how kids learn language

A neural network trained on the experiences of a single young child managed to learn one of the core components of language: how to match words to the objects they represent.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.