We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Susan Young Rojahn

A View from Susan Young Rojahn

RNA from a Single Cell in its Natural Environment

New method could help scientists understand neural circuits and tumor biology.

  • January 12, 2014

For the first time, researchers have been able to grab all the RNA from a single living cell while it is still in its natural microenvironment—that is, tight and cozy with its neighboring cells.

Capture ready: Rat neurons filled with an RNA-grabbing molecule (white) that can be activated with light.

The new method provides a unique way to study cell function and could be developed into a new way to study the effects of drugs inside the body. The researchers who developed the tool used it to show that a neuron interacting with its neighbors expresses a very different set of genes than a neuron grown in culture (a common way of studying the brain cells). In fact, many more genes were turned on in individual neurons grown in culture than those growing in their natural setting.  

Single-cell analyses provide much more insight into the biology of healthy and diseased cells, says study author James Eberwine, a biochemist at the University of Pennsylvania. For instance, if studying Alzheimer’s disease, the new method could be used to study the individual cells that neighbor the amyloid plaques associated with the condition. “You could see if there is a direct effect of that plaque on those cells,” says Eberwine.

Or, to ask basic questions about brain function, one could study how stimulating one neuron affects the gene expression of a neuron it communicates with through a synapse. Such a question was previously virtually impossible to ask, says Eberwine. He and colleagues show that their new single-cell RNA analysis technique can capture the RNA of just a single neuron while that neuron is still in synaptic contact with its neighbors. The team used their new method to grab the RNA from a single neuron from pieces of brain from mice as well as from human patients who had recently undergone brain surgery.

Their results were published in Nature Methods on Sunday.

In general, studying the molecular makeup of single cells is tricky. Most lab tests require much more starting material than one cell can offer. But while analyzing a large number of cells at once enables lots of experiments, it tends to muddy the results because researchers are taking an average of what is happening in each cell. Even cells taken from the same bit of an organ like the heart, liver, or brain can be different at the molecular level, with a different makeup of genes that are turned on, or expressed as proteins or other bio-molecules.

This is an important consideration for medicine. Take, for instance, a tumor. Two different cells in the same tumor can have different DNA mutations and other molecular changes that contribute to their deranged state. So when scientists in a hospital’s pathology lab studies a patient’s tumor to see whether it has a particular mutation that can be treated with a particular drug, they may not know if the drug they suggest will actually attack all or even most of the cells in that tumor.

Single-cell analyses can also be used to develop non-invasive ways to monitor cancer (see “Finding Cancer cells in the Blood”) and to know the genome of a mother’s egg before it is used in in vitro fertilization (see “Single-Cell Genomics Could Improve IVF Screening”).

The new RNA-focused method starts with an engineered molecule or “tag” that can make its way into a cell without disrupting the cell’s membrane. The tags enter many cells but do not grab onto RNA until they are activated by light. The researchers can then use a laser beam to activate the tags in only a single cell. A few more steps of molecular biology and the researchers have a pool of RNA that came from just a single cell.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.