Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Closing a Back Door for Cancer

Drugs that block a new target gene could make chemotherapy more effective.

About half of all cancer patients have a mutation in a gene called p53, which codes for a tumor-suppressing protein that controls cell division. That mutation allows tumors to continue growing even after chemotherapy damages their DNA.

a micrograph
A micrograph shows cells with abnormal p53 expression (brown) in a brain tumor.

A new study from MIT biologists has found that tumor cells with mutated p53 can be made much more vulnerable to chemotherapy by blocking another gene, called MK2. In a study of mice, tumors lacking both p53 and MK2 shrank dramatically when treated with the drug cisplatin, while tumors with functional MK2 kept growing.

January/February MIT News cover
This story is part of the January/February 2014 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

The new findings suggest that giving cancer patients a combination of a DNA-damaging drug and an MK2 inhibitor could be very effective, says biology professor Michael Yaffe, senior author of a Cell Reports paper describing the research. He notes that while several drugs that inhibit MK2 are now in clinical trials to treat inflammatory diseases such as arthritis and colitis, they have never been tested as possible cancer treatments.

Before cell division begins, p53 checks the cell’s DNA and initiates repair, if necessary. If DNA damage is too extensive, p53 forces the cell to undergo programmed cell death, or apoptosis. Tumors that lack p53 can avoid this fate.

“Usually p53 is the main driver of cell death, and if cells lose this pathway they become very resistant to different treatments,” says Koch Institute postdoc ­Sandra Morandell, who was lead author of the paper.

Yaffe’s lab had previously discovered that the MK2 gene helps counteract the effects of chemotherapy in cancer cells with mutated p53. When the drugs damage cancer cells’ DNA, MK2 puts the brakes on the cell division cycle, giving them time to repair the damage before dividing. “Our data suggested if you block the MK2 pathway, tumor cells wouldn’t recognize that they had DNA damage and they would keep trying to divide despite having DNA damage, and they would end up committing suicide,” Yaffe says.

In the new study, the researchers used a strain of mice that are genetically programmed to develop non-small-cell lung tumors. They further engineered the mice so that the MK2 gene could be turned on or off. That way, tumors with and without MK2 could be studied in the same animal.

Before treatment, tumors lacking both MK2 and p53 grew faster than tumors with MK2. This suggests that treating tumors with an MK2 inhibitor alone would do more harm than good, possibly increasing the growth rate by taking the brakes off the cell cycle. But cisplatin shrank the tumors lacking MK2 without affecting the others.

The researchers have found similar results with cancer cells grown in the lab from bone, cervical, and ovarian tumors. They are now studying mouse models of colon and ovarian cancer.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.