We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.


Drone Gets Its Smarts from a Smartphone

Researchers believe an Android smartphone is the key to creating a low-cost, autonomous drone.

Unmanned aerial vehicles could be useful for everything from surveying disaster scenes to helping shoppers find their way around a mall.

Researchers are using a smartphone as the brains behind a small, inexpensive drone—the phone enables it to find its way around enclosed indoor spaces without using GPS or a remote guide. Although it’s still at an early stage, the so-called SmartCopter could eventually make it safer and cheaper to scout out disaster scenes before human responders plunge in.

Super fly: The SmartCopter, a Vienna University of Technology research project, uses a smartphone as its computer and can navigate on its own.

Annette Mossel, a graduate student behind the project who studies virtual reality, tracking, and 3-D interaction at the Vienna University of Technology, says the idea was born out of a desire to create an inexpensive, autonomous, unmanned aerial vehicle that could help survey disaster scenes. Using a smartphone as the processing unit cuts costs and makes it easier to update the drone’s software, she says.

Several robots have been developed that can crawl inside buildings or check out suspicious packages, including bots that can be thrown, such as iRobot’s FirstLook robot and Bounce Imaging’s camera-laden ball, called the Explorer (see “Bouncing Camera Gets into Dangerous Places So People Don’t Have To”).

The SmartCopter could be less expensive than these devices. The Vienna group built its test drone using four motors, an Arduino microcontroller, and a Samsung Galaxy S II Android smartphone. Excluding the phone, Mossel says, the drone cost about 300 euros ($412) to build. “We wanted to keep the costs low and build our copter based on open hardware approaches,” Mossel says. A paper on the SmartCopter was presented this month at the International Conference on Advances in Mobile Computing & Multimedia in Vienna, Austria.

The big challenge was figuring out the best approach to navigating without using the phone’s built-in GPS, since the technology doesn’t work well (if at all) indoors, and may not be precise enough in some situations (the U.S. government website devoted to GPS indicates that the technology is accurate to within about 26 feet).

The group’s first prototype solved this challenge in a fairly low-tech way: by detecting paper markers that had been set up in the area the drone needed to track. An app on the smartphone tells the drone to lift itself to a predetermined height, from which it starts looking for the markers. Each time it finds a new marker, it is added to the drone’s map. By looking at the markers and evaluating different sensory input from the smartphone’s accelerometer, gyroscope, and magnetometer, the software can determine the drone’s position in space, Mossel says.

Once the drone stops finding new markers, it simply hovers and waits for new instructions from a remote laptop that monitors its flight. It could also be programmed to land in a specific spot (perhaps its starting point outside a building, for example) once its job is done.

Besides scoping out disaster scenes, Mossel can imagine a slew of other uses for the SmartCopter, from inspecting the condition of walls and ceilings in big, open rooms in churches and museums to helping shoppers navigate malls.

Among the obstacles the SmartCopter team will encounter if it forges ahead with developing an actual product is a regulatory climate that hasn’t figured out how to deal with drones. The U.S. Federal Aviation Administration has not set rules for drone safety and operation, but those regulations are in the works and are expected to go into effect in 2015.

For now, Mossel and her colleagues are focused on the next phase of their research, which involves getting the smartphone to track features of a room like corners and gradients so the drone doesn’t need to use markers to map its surroundings.

“We don’t think, ‘Okay, in a year we will make a company and turn it into a product,’ ” she says. “But I think it’s pretty possible for all of us who are working on it.”

Learn from the humans leading the way in connectivity at EmTech Next. Register Today!
June 11-12, 2019
Cambridge, MA

Register now
More from Connectivity

What it means to be constantly connected with each other and vast sources of information.

Want more award-winning journalism? Subscribe to All Access Digital.
  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.