Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A Golden On-Off Switch

Gold nanoparticles could be used to regulate blood clotting.

Using gold nanoparticles, MIT researchers have devised a new way to turn blood clotting on and off. The particles, which are controlled by infrared laser light, could promote wound healing or help doctors regulate blood clotting in patients undergoing surgery.

a colorized electron micrograph
A colorized electron micrograph shows red blood cells with gold nanorods (yellow dots) on their surfaces. (The blue is a polymer used to fix the cells for imaging.) The image below is an electron micrograph of gold nanorods.
an electron micrograph of gold nanorods
November/December MIT News cover
This story is part of the November/December 2013 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

Blood clotting is produced by a long cascade of protein interactions, culminating in the formation of fibrin, a fibrous protein that seals wounds. Heparin and other blood thinners interfere with this process by targeting several of the reactions that occur during the blood-clotting cascade. But there’s no way to counteract the effects of blood thinners. “It’s like you have a light bulb, and you can turn it on with the switch just fine, but you can’t turn it off. You have to wait for it to burn out,” says Kimberly Hamad-Schifferli ’94, a technical staff member at MIT Lincoln Laboratory. She says a better solution would be an agent that targets only the last step—the conversion of fibrinogen to fibrin, a reaction mediated by an enzyme called thrombin.

Several years ago, scientists discovered that DNA with a specific sequence inhibits thrombin by blocking the site where it would typically bind to fibrinogen. The complementary DNA sequence can shut off the inhibition—and turn blood clotting back on—by binding to the original thrombin-inhibiting DNA strand and preventing it from attaching to thrombin.

Hamad-Schifferli and her colleagues had previously shown that gold nanorods bound to drugs or other compounds can be designed to release them when exposed to infrared light. The size of the nanorod determines the wavelength of light that will activate this process. To manipulate the blood-­clotting cascade, the researchers loaded a smaller gold nanorod (35 nanometers long) with the DNA thrombin inhibitor; a larger particle (60 nanometers long) was loaded with the complementary DNA strand.

Under the correct wavelength of infrared light, the electrons within the gold become very excited and generate so much heat that they melt slightly, taking on a more spherical shape and releasing their DNA payload.

The researchers have successfully tested the particles in human blood samples and are now engineering them so they can travel to injury sites where they would be needed.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
Next in MIT News
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.